小P的牧场
【题目描述】
背景:小P 是个特么喜欢玩MC 的孩纸。。。
小P 在MC 里有n 个牧场,自西向东呈一字形排列(自西向东用1…n 编号),于是他就烦恼了:为了控制这n 个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i 个牧场建立控制站的花费是ai,每个牧场i 的放养量是bi,理所当然,小P 需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。
【输入格式】
第一行一个整数n 表示牧场数目
第二行包括n 个整数,第i 个整数表示ai
第三行包括n 个整数,第i 个整数表示bi
【输出格式】
只有一行,包括一个整数,表示最小花费
【样例输入】
4
2 4 2 4
3 1 4 2
【样例输出】
9
【样例解释】
选取牧场1,3,4 建立控制站,最小费用为2+( 2 + 1 * 1 ) + 4 = 9。
数据范围与约定
对于10%的数据,1 <= n <= 10
对于30%的数据,1 <= n <= 1000
对于100%的数据,1 <= n <= 1000000 , 0 < ai,bi <= 10000

分析:

经过思考可以得到这样一个式子

f[i,1]表示在第i个牧场建站且右边的牧场已全部控制的最小费用,f[i,0]表示第i个牧场未建站而从i到n的牧场都被控制的最小代价,倒着来进行处理。

f[i,1]:=min(f[i+1,1],f[i+1,0])+a[i];

f[i,0]:=min(f[j,1]+t); (i:=n..1,i<j<n)

其中t表示i..j-1的牧场被j控制的总代价,在动规循环同时求出,这样要用三层循环,显然这个效率并不好。

对DP进行改进,将牧场排列倒过来,同时改进f,f[i]表示在第i个牧场建站并之前的牧场都被控制的最小总代价,我们增加一个牧场n+1,令其建站和被控制代价为0。则有:

f[i]:=min(f[j]+t)+a[i];(i:=1..n+1,1<=j<i) 其中t表示j+1..i-1的牧场都被控制的总代价,求t可以采用一个很好地方法:

令s[i]表示1..i的a数组元素和,u[i]表示1..i的s数组元素和:

t=s[i-1]-s[j]+s[i-1]-s[j+1]+...+s[i-1]-s[i-2]

=s[i-1]*(i-j-1)-(s[j]+s[j+1]+s[j+2]+..+s[i-2])

=s[i-1]*(i-j-1)-(u[i-2]-u[j-1])

于是得到:

f[i]:=min(f[j]+s[i-1]*(i-j-1)-(u[i-2]-u[j-1]))+a[i];

时间效率为O(n^2),这样还不够,于是进行斜率优化,要注意向队列添加元素时队内最少元素数目不低于2个,我就在这里处理错了导致之前一直没AC。

代码:

program pasture;
var
f:array[..]of int64;
a,b,u,s,q:array[..]of int64;
n,m,t,k,h,j:int64; i:longint;
function min(x,y:int64):int64;
begin
if x<y then min:=x else min:=y;
end;
function cal1(x,y:longint):int64;
begin
exit(f[x]-f[y]+u[x-]-u[y-]);
end;
function cal2(x,y:longint):int64;
begin
exit(x-y);
end;
begin
readln(n);
for i:=n downto do
read(a[i]);
readln;
for i:=n downto do
read(b[i]);
for i:= to n do
s[i]:=s[i-]+b[i];
for i:= to n do
u[i]:=u[i-]+s[i];
f[]:=a[]; q[]:=; h:=; t:=;
for i:= to n+ do
begin
while (h<t)and(cal1(q[h+],q[h])<s[i-]*cal2(q[h+],q[h])) do inc(h);
j:=q[h];
f[i]:=f[j]+s[i-]*(i-j-)-(u[i-]-u[j-])+a[i];
while (t-h>=)and(cal1(i,q[t])*cal2(q[t],q[t-])<=cal1(q[t],q[t-])*cal2(i,q[t])) do dec(t);
t:=t+; q[t]:=i;
end;
writeln(f[n+]);
end.

BZOJ 3437:小P的牧场(DP+斜率优化)的更多相关文章

  1. BZOJ 3437 小P的牧场(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...

  2. bzoj 3437: 小P的牧场【斜率优化】

    emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...

  3. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  4. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  5. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  6. bzoj3437 小P的牧场(斜率优化dp)

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2025  Solved: 1110[Submit][Status][Discu ...

  7. BZOJ3437 小P的牧场 【斜率优化dp】

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1502  Solved: 836 [Submit][Status][Disc ...

  8. BZOJ 3437: 小P的牧场

    传送门 显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价 那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$ $val[i][j]$ ...

  9. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  10. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

随机推荐

  1. NOIP2018赛前停课集训记——最后的刷板子计划

    前言 再过两天就\(NOIP2018\)了. 于是,我决定不做其他题目,开始一心一意刷板子了. 这篇博客记录的就是我的刷板子计划. [洛谷3383][模板]线性筛素数 这种普及-的题目我还写挂了两次( ...

  2. 【BZOJ2006】[NOI2010] 超级钢琴(堆+RMQ)

    点此看题面 大致题意: 要你求出区间和前\(k\)大的区间的区间和之和,其中每个区间的大小在\(L\)与\(R\)之间. 堆+\(RMQ\) 这道题目,我们可以先对\(1\sim n\)中的每一个\( ...

  3. Flutter Json序列号和反序列化遇到问题 Missing "part 'xxx.g.dart';"

    /** * * 1.@JsonSerializable() 这是表示告诉编译器这个类是需要生成Model类的 * 2,@JsonKey 由于服务器返回的部分数据名称在Dart语言中是不被允许的, * ...

  4. tensorflow构建CNN模型时的常用接口函数

    (1)tf.nn.max_pool()函数 解释: tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=No ...

  5. 通过jQuery遍历div里面的checkbox

    遍历: $('#queryUser2 input[type="checkbox"]:checked').each( function () { a = a + $(this).va ...

  6. A1043 Is It a Binary Search Tree (25 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  7. Django 模型与 Mysql 数据类型对应

    Django 1.11.9 文件路径:site-packages\django\db\backends\mysql\base.py–class DatabaseWrapper _data_types ...

  8. linux系统监控工具glances

    glances linux系统自带了很多系统性能监控工具,如top,vmstat,iftop等等,还有一款监视工具glances,它能把其他几个监控的指标都集于一身.Glances是一个相对比较新的系 ...

  9. 【Python学习之七】面向对象高级编程——使用@property

    参考来自廖雪峰Python教程:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/ ...

  10. linux三剑客之sed深度实践

    参数: -a:追加文本到指定行后 -i:插入文本到指定行前 1.单行增加 [root@redhat~]#   sed  ' 2a  6,f '  linux.tet 1,a 2,b 6,f 3,c 4 ...