POJ - 2299 Ultra-QuickSort 【树状数组+离散化】
题目链接
http://poj.org/problem?id=2299
题意
给出一个序列 求出 这个序列要排成有序序列 至少要经过多少次交换
思路
求逆序对的过程
但是因为数据范围比较大 到 999999999
但是 给的 n 的数量又比较少 所以 离散化一下就可以了
比如 给出的
9 1 0 5 4
原始ID 0 1 2 3 4
排序后 0 1 4 5 9
原始ID 2 1 4 3 0
然后就可以发现 求 9 1 0 5 4 的 所有逆序对个数 实际和 求 2 1 4 3 0
的逆序对个数 是一样的
然后 我们就可以将数据范围缩小到 50000
就可以用数组保存了
因为 sum 求得的是 之前比当前数字小的数字的个数 那么
逆序对个数就是 i - sum(i)
然后套用树状数组就可以了
参考
https://www.cnblogs.com/George1994/p/7710886.html
有一个坑点是 要用long long
AC代码
#include <cstdio>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <map>
#include <stack>
#include <set>
#include <numeric>
#include <sstream>
#include <iomanip>
#include <limits>
#define CLR(a) memset(a, 0, sizeof(a))
#define pb push_back
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
typedef pair<string, int> psi;
typedef pair<string, string> pss;
const double PI = acos(-1.0);
const double E = exp(1.0);
const double eps = 1e-30;
const int INF = 0x3f3f3f3f;
const int maxn = 5e5 + 5;
const int MOD = 1e9 + 7;
int a[maxn];
int sum[maxn];
struct node
{
int v, ord;
}q[maxn];
bool comp(node x, node y)
{
return x.v < y.v;
}
int lowbit(int x)
{
return x & (-x);
}
int Sum(int n)
{
int ans = 0;
while (n > 0)
{
ans += a[n];
n -= lowbit(n);
}
return ans;
}
void add(int x)
{
while (x <= maxn)
{
a[x]++;
x += lowbit(x);
}
}
int main()
{
int n;
while (scanf("%d", &n) && n)
{
CLR(a, 0);
CLR(q, 0);
CLR(sum, 0);
for (int i = 0; i < n; i++)
{
scanf("%d", &q[i].v);
q[i].ord = i;
}
sort(q, q + n, comp);
ll ans = 0;
for (int i = 0; i < n; i++)
{
ans += (i) - Sum(++q[i].ord);
add(q[i].ord);
}
cout << ans << endl;
}
}
POJ - 2299 Ultra-QuickSort 【树状数组+离散化】的更多相关文章
- POJ 2299 Ultra-QuickSort(树状数组+离散化)
http://poj.org/problem?id=2299 题意:给出一组数,求逆序对. 思路: 这道题可以用树状数组解决,但是在此之前,需要对数据进行一下预处理. 这道题目的数据可以大到999,9 ...
- poj 2299 Ultra-QuickSort(树状数组求逆序数+离散化)
题目链接:http://poj.org/problem?id=2299 Description In this problem, you have to analyze a particular so ...
- poj 2299 Ultra-QuickSort(树状数组求逆序数)
链接:http://poj.org/problem?id=2299 题意:给出n个数,求将这n个数从小到大排序,求使用快排的需要交换的次数. 分析:由快排的性质很容易发现,只需要求每个数的逆序数累加起 ...
- poj 2299 Ultra-QuickSort(树状数组)
Ultra-QuickSort Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 67681 Accepted: 25345 ...
- POJ 2299 Ultra-QuickSort【树状数组 ,逆序数】
题意:给出一组数,然后求它的逆序数 先把这组数离散化,大概就是编上号的意思--- 然后利用树状数组求出每个数前面有多少个数比它小,再通过这个数的位置,就可以求出前面有多少个数比它大了 这一篇讲得很详细 ...
- POJ 2299 【树状数组 离散化】
题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...
- hdu4605 树状数组+离散化+dfs
Magic Ball Game Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- BZOJ_5055_膜法师_树状数组+离散化
BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...
- POJ 2299 树状数组+离散化求逆序对
给出一个序列 相邻的两个数可以进行交换 问最少交换多少次可以让他变成递增序列 每个数都是独一无二的 其实就是问冒泡往后 最多多少次 但是按普通冒泡记录次数一定会超时 冒泡记录次数的本质是每个数的逆序数 ...
随机推荐
- MySQL开发36条军规
转载地址:http://blog.itpub.net/22664653/viewspace-723506/ 写在前面的话: 总是在灾难发生后,才想起容灾的重要性: 总是在吃过亏后,才记得曾经有人提醒过 ...
- 【前端GUI】—— 前端设计稿切图通用性标准
前言:公司在前端组和视觉组交接设计稿切图的时候,总会因为视觉组同事们对前端的实现原理不清楚而出现各种问题,在用的时候还得再次返工,前端组同事们一致觉得应该出一份<设计稿切图通用性标准文件> ...
- 计算机网络漫谈:OSI七层模型与TCP/IP四层(参考)模型
提纲.png 一.七层?四层? OSI模型(Open System Interconnection Reference Model,缩写为OSI),全名“开放式系统互联通信参考模型”,是一个试图使各种 ...
- Synchronous XMLHttpRequest on the main thread is deprecated because of its detrimental……
Synchronous XMLHttpRequest on the main thread is deprecated because of its detrimental effects to th ...
- Shell脚本之:变量
与编译型语言不同,shell脚本是一种解释型语言. 执行这类程序时,解释器(interpreter)需要读取我们编写的源代码(source code),并将其转换成目标代码(object code), ...
- UNP学习笔记(第十六章 非阻塞I/O)
套接字的默认状态时阻塞的 可能阻塞的套接字调用可分为以下4类: 1.输入操作,包括read.readv.recv.recvfrom和recvmsg. 2.输入操作,包括write.writev.sen ...
- 我如何添加一个空目录到Git仓库?
新建了一个仓库,只是创建一些目录结构,还不里面放什么,要放的内容还没有,还不存在,应该怎么办呢? Git 是不跟踪空目录的,所以需要跟踪那么就需要添加文件! 也就是说 Git 中不存在真正意义上的空目 ...
- JavaOne2013 开发者大会
参加完JavaOne 2013开发者大会,把听的东西总结一下,基本上是介绍Java的最新发展情况,和对未来的展望. 现在全球有9 million 的Java开发人员,Java语言除了在传统的Enter ...
- HTML5 2D平台游戏开发#4状态机
在实现了<HTML5 2D平台游戏开发——角色动作篇之冲刺>之后,我发现随着角色动作的增加,代码中的逻辑判断越来越多,铺天盖地的if() else()语句实在让我捉襟见肘: 这还仅仅是角色 ...
- uboot生成随机的MAC地址
转载:http://blog.chinaunix.net/uid-25885064-id-3303132.html 在使用U-boot时,有个问题就是MAC地址的设置,如果MAC地址相同的两块开发板在 ...