题意:有n个数字,n-1个运算符,每个运算符的顺序可以任意,因此一共有 (n - 1)! 种运算顺序,得到 (n - 1)! 个运算结果,然后求这些运算结果之和 MOD 1e9+7.

分析:

类比最优矩阵链乘,枚举区间[l, r]中最后一个运算符的位置k。

如果运算符为乘法的话,那么根据乘法分配率这个乘法会分配进去。

这个区间中一共有r - l个运算符,其中最后一个运算符已经定了是第k个,左区间[l, k]有k - l个运算符,右区间[k + 1, r]有 r - k - 1 个运算符。

而且左、右区间运算符的先后顺序确定以后,两个区间之间的顺序是互不影响的,因此这样相同的结果一共有C(r - l - 1, k - l)

因此答案还要乘上这个数,d(i, j) += d(i, k) * d(k + 1, r) * C(r - l - 1, k - l) | op[k] = *

但如果是加减法的话就不能直接按照运算符进行区间合并了。

对于左区间的确定的一个运算顺序,右区间一共有 (r - k - 1)! 个运算结果,所以答案累加一个 d(l, k) * (r - k - 1)!

同样地,对于右区间一个确定的操作顺序,左区间对应有 (k - l)! 个运算结果,答案累加一个 d(k + 1, r) * (k - l)!

最后确定两个区间 r - l - 1 个运算符的顺序,最终答案乘上 C(r - l - 1, k - l)

最后总结一下答案就是:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long LL; const int maxn = + ;
const LL MOD = ; int n;
LL a[maxn];
LL fac[maxn], C[maxn][maxn];
char op[maxn]; int vis[maxn][maxn];
LL d[maxn][maxn]; LL dp(int l, int r)
{
if(vis[l][r]) return d[l][r];
LL& ans = d[l][r];
ans = ;
vis[l][r] = true;
if(l == r) return ans = a[l];
if(l + == r)
{
if(op[l] == '*') return ans = a[l] * a[r] % MOD;
if(op[l] == '+') return ans = (a[l] + a[r]) % MOD;
if(op[l] == '-') return ans = (((a[l] - a[r]) % MOD) + MOD) % MOD;
}
for(int k = l; k < r; k++)
{
LL t1 = dp(l, k), t2 = dp(k + , r);
LL t;
if(op[k] == '*')
{
t = t1 * t2 % MOD;
t = t * C[r - l - ][k - l];
ans = (ans + t) % MOD;
continue;
} t1 = t1 * fac[r - k - ] % MOD;
t2 = t2 * fac[k - l] % MOD;
if(op[k] == '+') t = (t1 + t2) % MOD;
else t = (((t1 - t2) % MOD) + MOD) % MOD;
t = t * C[r - l - ][k - l];
ans = (ans + t) % MOD;
} return ans;
} int main()
{
fac[] = ;
for(int i = ; i < maxn; i++) fac[i] = fac[i - ] * i % MOD;
for(int i = ; i < maxn; i++) C[i][] = C[i][i] = 1LL;
for(int i = ; i < maxn; i++)
for(int j = ; j < i; j++) C[i][j] = (C[i-][j] + C[i-][j-]) % MOD; while(scanf("%d", &n) == && n)
{
for(int i = ; i <= n; i++) scanf("%I64d", a + i);
scanf("%s", op + );
memset(vis, false, sizeof(vis));
memset(vis, , sizeof(vis));
printf("%I64d\n", dp(, n));
} return ;
}

代码君

HDU 5396 区间DP 数学 Expression的更多相关文章

  1. hdu 4283 区间dp

    You Are the One Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  3. HDU 4293---Groups(区间DP)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=4293 Problem Description After the regional con ...

  4. String painter HDU - 2476 -区间DP

    HDU - 2476 思路:分解问题,先考虑从一个空串染色成 B串的最小花费 ,区间DP可以解决这个问题 具体的就是,当 str [ l ] = = str [ r ]时 dp [ L ] [ R ] ...

  5. HDU 4632 区间DP 取模

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4632 注意到任意一个回文子序列收尾两个字符一定是相同的,于是可以区间dp,用dp[i][j]表示原字 ...

  6. 2016 ACM/ICPC Asia Regional Shenyang Online 1009/HDU 5900 区间dp

    QSC and Master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  7. HDU 4570(区间dp)

    E - Multi-bit Trie Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  8. hdu 2476 区间dp

    题意: 给出两个串s1和s2,一次只能将一个区间刷一次,问最少几次能让s1=s2 例如zzzzzfzzzzz,长度为11,我们就将下标看做0~10 先将0~10刷一次,变成aaaaaaaaaaa 1~ ...

  9. hdu 4632(区间dp)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

随机推荐

  1. 值类型 VS 引用类型~

    问     题 值  类  型 引 用 类 型 这个类型分配在哪里? 分配在栈上 分配在托管堆上 变量是怎么表示的? 值类型变量是局部复制 引用类型变量指向被分配得实例所占的内存 基类型是什么? 必须 ...

  2. 序列化流与反序列化流,打印流,工具类commons-IO

    1序列化流与反序列化流 用于从流中读取对象的操作流 ObjectInputStream    称为 反序列化流 用于向流中写入对象的操作流 ObjectOutputStream   称为 序列化流 特 ...

  3. mongodb关联查询 和spring data mongodb

    GITHUB:https://github.com/peterowang/Springdata-mongo 使用DBRefs DBRefs中有三个字段 - $ref - 此字段指定引用文档的集合 $i ...

  4. 【js类库Raphaël】使用raphael.js根据点坐标绘制平滑曲线

     一.可供参考的文档资料. raphaeljs官网:http://raphaeljs.com/ w3c关于path的介绍:http://www.w3.org/TR/2003/REC-SVG11-200 ...

  5. nmap -sS

    SYN 扫描,半连接,受到syn/ack响应后意味着端口开放,收到rst包意味着端口关闭.

  6. 火狐浏览器不支持location.reload()(以改变页面大小时重新刷新页面为例)

    背景:当页面大小改变时需要重新刷新页面,以适应相应的尺寸 解决方法: var url = window.location.href; var parm = parseInt(Math.random() ...

  7. python基础教程总结15——5 虚拟茶话会

    聊天服务器: 服务器能接受来自不同用户的多个连接: 允许用户同时(并行)操作: 能解释命令,例如,say或者logout: 容易拓展 套接字和端口: 套接字是一种使用标准UNIX文件描述符(file ...

  8. 【Orange Pi Lite2】 ——1《如何开始使用开源硬件》

    [Orange Pi Lite2] --1<如何开始使用开源硬件> 本文只在博客园发布 在开始前你需要准备的材料与软件 用户手册_Orange Pi Lite2 OrangePi_Lite ...

  9. FreeRTOS笔记

    任务的创建和删除(静态方法) 任务创建后要开启调度器. FreeRTOSConfig.h 1. 改宏 使能静态创建函数. 会出现,有两个函数未定义. Cortex-M中断管理(上) NVIC:嵌套向量 ...

  10. async/await的使用以及注意事项

    使用 async / await, 搭配 promise, 可以通过编写形似同步的代码来处理异步流程, 提高代码的简洁性和可读性. 本文介绍 async / await 的基本用法和一些注意事项. a ...