SPOJ 1825 Free tour II 树分治
题意:
给出一颗边带权的数,树上的点有黑色和白色。求一条长度最大且黑色节点不超过k个的最长路径,输出最长的长度。
分析:
说一下题目的坑点:
- 定义递归函数的前面要加
inline,否则会RE。不知道这是什么鬼,=_=|。 ans要初始化为0,而不是一个绝对值很大的负数,因为我们可以选择只有一个顶点的路径,这样权值就是0。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
#define MP make_pair
using namespace std;
typedef pair<int, int> PII;
const int maxn = 200000 + 10;
const int INF = 0x3f3f3f3f;
struct Edge
{
int v, w, nxt;
Edge() {}
Edge(int v, int w, int nxt): v(v), w(w), nxt(nxt) {}
};
int n, k, m, ans;
int black[maxn];
vector<int> a;
int ecnt, head[maxn];
Edge edges[maxn * 2];
inline void AddEdge(int u, int v, int w) {
edges[ecnt] = Edge(v, w, head[u]);
head[u] = ecnt++;
}
int fa[maxn], sz[maxn];
int dep[maxn], f[maxn], g[maxn], num[maxn];
bool del[maxn];
inline void dfs(int u) {
sz[u] = 1;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v] || v == fa[u]) continue;
fa[v] = u;
dfs(v);
sz[u] += sz[v];
}
}
inline PII findCenter(int u, int t) {
PII ans(INF, u);
int m = 0;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v] || v == fa[u]) continue;
m = max(m, sz[v]);
ans = min(ans, findCenter(v, t));
}
m = max(m, t - sz[u]);
return min(ans, MP(m, u));
}
inline void getdep(int u, int p) {
dep[u] = 0;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == p || del[v]) continue;
getdep(v, u);
dep[u] = max(dep[u], dep[v]);
}
dep[u] += black[u];
}
bool cmp(int a, int b) { return dep[edges[a].v] < dep[edges[b].v]; }
inline void getg(int u, int p, int d, int c) {
g[c] = max(g[c], d);
for(int i = head[u]; ~i; i = edges[i].nxt) {
Edge& e = edges[i];
if(e.v == p || del[e.v]) continue;
getg(e.v, u, d + e.w, c + black[e.v]);
}
}
inline void solve(int u) {
fa[u] = 0;
dfs(u);
int s = findCenter(u, sz[u]).second;
del[s] = true;
for(int i = head[s]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v]) continue;
solve(v);
}
int tot = 0;
for(int i = head[s]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v]) continue;
getdep(v, s);
num[++tot] = i;
}
sort(num + 1, num + 1 + tot, cmp);
int mxdep = dep[edges[num[tot]].v];
for(int i = 0; i <= mxdep; i++) f[i] = -INF;
for(int i = 1; i <= tot; i++) {
int v = edges[num[i]].v, w = edges[num[i]].w;
int d = dep[v];
for(int j = 0; j <= d; j++) g[j] = -INF;
getg(v, s, w, black[v]);
if(i != 1) {
for(int j = 0; j <= k - black[s] && j <= d; j++) {
int j2 = min(dep[edges[num[i-1]].v], k - black[s] - j);
if(f[j2] == -INF) break;
if(g[j] != -INF) ans = max(ans, g[j] + f[j2]);
}
}
for(int j = 0; j <= d; j++) {
f[j] = max(f[j], g[j]);
if(j) f[j] = max(f[j], f[j-1]);
if(j + black[s] <= k) ans = max(ans, f[j]);
}
}
del[s] = false;
}
int main()
{
scanf("%d%d%d", &n, &k, &m);
while(m--) {
int x; scanf("%d", &x);
black[x] = 1;
}
ecnt = 0;
memset(head, -1, sizeof(head));
for(int i = 1; i < n; i++) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
AddEdge(u, v, w);
AddEdge(v, u, w);
}
ans = 0;
solve(1);
printf("%d\n", ans);
return 0;
}
SPOJ 1825 Free tour II 树分治的更多相关文章
- [spoj] FTOUR2 FREE TOUR II || 树分治
原题 给出一颗有n个点的树,其中有M个点是拥挤的,请选出一条最多包含k个拥挤的点的路径使得经过的权值和最大. 正常树分治,每次处理路径,更新答案. 计算每棵子树的deep(本题以经过拥挤节点个数作为d ...
- SPOJ 1825 Free tour II (树的点分治)
题目链接 Free tour II 题意:有$N$个顶点的树,节点间有权值, 节点分为黑点和白点. 找一条最长路径使得 路径上黑点数量不超过K个 这是树的点分治比较基本的题,涉及树上启发式合并……仰望 ...
- spoj 1825 Free tour II
http://www.spoj.com/problems/FTOUR2/ After the success of 2nd anniversary (take a look at problem FT ...
- SPOJ:Free tour II (树分治+启发式合并)
After the success of 2nd anniversary (take a look at problem FTOUR for more details), this 3rd year, ...
- 【SPOJ】1825. Free tour II(点分治)
http://www.spoj.com/problems/FTOUR2/ 先前看了一会题解就自己yy出来了...对拍过后交tle.................. 自己造了下大数据........t ...
- SPOJ 1825 Free Tour | 终极之树分治
求树上最长路径使得经过的拥挤节点个数不超过K //欢迎访问这个博客!http://www.cnblogs.com/luyouqi233/p/8036828.html #include<cstdi ...
- SPOJ FTOUR2 - Free tour II
Description 有些黑点,问你选择不超过 \(k\) 个黑点的路径,路径权值最大是多少. Sol 点分治. 这是qzc的论文题,不过我感觉他的翻译好强啊...我还是选择了自己去看题目... 点 ...
- SP1825 FTOUR2 - Free tour II 点分治+启发式合并+未调完
题意翻译 给定一棵n个点的树,树上有m个黑点,求出一条路径,使得这条路径经过的黑点数小于等于k,且路径长度最大 Code: #include <bits/stdc++.h> using n ...
- SPOJ1825 FTOUR2 - Free tour II
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
随机推荐
- 微服务实践分享(2)api网关
1.作用[http://chuansong.me/n/465796751848]: 一个完整的.「面向接入」的API GW需要包含以下功能: 面向运行期 对客户端实现身份认证 通信会话的秘钥协商,报文 ...
- c#基础3-方法的重载静态和非静态,字段属性,方法
方法的重载概念:方法的重载指的就是方法的名称相同给,但是参数不同.参数不同,分为两种情况1).如果参数的个数相同,那么参数的类型就不能相同.2).如果参数的类型相同,那么参数的个数就不能相同.***方 ...
- HTTP1.1中CHUNKED编码解析(转载)
HTTP1.1中CHUNKED编码解析 一般HTTP通信时,会使用Content-Length头信息性来通知用户代理(通常意义上是浏览器)服务器发送的文档内容长度,该头信息定义于HTTP1.0协议RF ...
- Mind must be master of the body, strong mind can separate the body from its suffering.
Mind must be master of the body, strong mind can separate the body from its suffering.意志是身体的主人,有顽强的意 ...
- 一键部署LNMP堆栈Web应用基础架构
https://market.azure.cn/Vhd/Show?vhdId=9852&version=10884 产品详情 产品介绍LEMP/LNMP 是指一组通常一起使用来运行动态网站或者 ...
- Webpack 10分钟入门
可以说现在但凡开发Single page application,webpack是一个不可或缺的工具. WebPack可以看做是一个模块加工器,如上图所示.它做的事情是,接受一些输入,经过加工产生一些 ...
- Red Hat Enterprise Linux(RHEL)中yum的repo文件详解
Yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器.基于RPM包管理,能够从指定的服务器自动下载 ...
- UVA 690 PipelineScheduling 位运算+dfs+剪枝
一开始最容易想到间隔最多为n,但是结点还是太多了,需要优化. 预处理:预判一下并保存下一个可以放的位置距离之前的距离.这样可以减少很多判断. 最优化剪枝:如果当前长度+剩下没放的程序*最短间隔如果大于 ...
- uoj#300.【CTSC2017】吉夫特
题面:http://uoj.ac/problem/300 一道大水题,然而我并不知道$lucas$定理的推论.. $\binom{n}{m}$为奇数的充要条件是$n&m=n$.那么我们对于每个 ...
- python之道08
1.有如下文件,a1.txt,里面的内容为: 某某是最好的学校, 全心全意为学生服务, 只为学生未来,不为牟利. 我说的都是真的.哈哈 分别完成以下的功能: a,将原文件全部读出来并打印. 答案 f ...