First, I don't often give praise for support but I must say Travis, Karthik and Derek from TI have been extremely instrumental in getting my SRIO environment to work and bringing me up to speed on tips and tricks for SRIO.  It has been very nice to see success and progress.  Thanks again guys!

So in an effort to consolidate much of what I have learned, I will post here some information that I would have found extremely helpful 5 weeks ago :)

My environment:

I was using a aTCA chassis with a MCH that has an SRIO switch.  For more on my setup, please see this post:http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/164695.aspx  Here I say what parts I am using and some commands that I found helpful when working with the MCH.

My Goal:

Get DSP-A on C6678 EVM-A to send a message to DSP-B on C6678 EVM-B via an SRIO switch.

TI Example Programs:

When the TI programs are in loopback mode, they seem to work just fine.  They use the CSL (Chip Support Library) to access registers.  The CSL is nice.  Plus once you open a CSL handle, you can just access the structure with all the registers yourself (see example in the after port ok section).

To switch between loopback and "normal" mode use these CSLs:

CSL_SRIO_SetLoopbackMode(hSrio, 0);

CSL_SRIO_SetNormalMode(hSrio,0);

While it seemed to make sense for me to use the MultiCoreLoopback example or the ChipToChip example, it turns out these are extremely complex and make it difficult to learn/understand what is going on.

Travis recommended using the loopbackDioIsr example project.  This project is simpler using less of the queuing capabilities of the dsp.  This program essentially accesses an exact memory location as given in the LSU (load storage unit) registers at the destination ID.  So in the case of a loopback, it is just another location in DSP-A.  In normal mode, it is a memory location in DSP-B (assuming you set up the destination IDs).  Be careful, this also means you can write to any location in memory - any!

Switch and routing issues:

- Remember all device ideas have to be unique.  So if you use the same example program on each DSP (A&B), it won't work unless you change the device ids.

- Remember that the switch will need to be configured to properly route destination ids on the packets.  This can be done with maintanence packets or by direct configuration of the switch.  In my case, the switch has a default configuration file that I modified to route from DSP-A to DSP-B.

- Remember to make sure that the switch enables the input and output on the port you are using.  If it is not enabled only maintanence packets will be received.  All other types will be dropped.

- my switch could only accept one connection from one device ID.  The way the TI SRIO works is that you can have multiple port connections but they will always have the same device ID.  The examples are written to make (4) 1 lane connections to the other device.   You might need to adjust this portion of the examples if your switch is like mine.

- Travis says "port-writes" should be disabled unless you have a specific reason to use them.

- some switches need to be specially enabled to accept 16 bit destination ids.  Just something to keep in mind.

Understanding Ack IDs (from Travis):

Normal handshaking at the physical layer would be like this:

Device A sends a packet to Device B with ackid n

There is a transmission error on packet ackid n

Device B sees a CRC error and goes into Input error stopped state
(drops all new RX packets)

Device B sends a PNA control symbol to Device A

On reception of the PNA, Device A goes into output error stopped
state (stops sending any new packets)

Device A sends a LR Input status control symbol to device B

On reception of the LR input status, Device B sends a Link
maintenance response control symbol indicating packet ackid n was the PNA
packet.

Also, Device B then enters normal mode.

On reception of the link maintenance response packet, Device A goes
into normal mode and starts resending packets to device B stating with packet
ackid n

Things to check after "Port Ok":

After you get a port ok, if you are having problems sending messages here are some registers you should check (the listed register is for Port 0).

- ERR_Stat (TI register 0xB158)

- LM_RESP (TI register B144)

- ERR_Det (TI register C040)

- SP0_CTL (TI register B15C)

These collectively told me that the switch was not accepting my packets and in the end lead to the discovery that the switch had not enabled input and output messaging and was only accepting maintanence packets.

If you ever see the Output Error Stop condition or the Input Error Stop condition, there is a magic number that is to be written to a register.  In fact, Travis recommends doing this no matter what after receiving "Port Ok".

hSrio->RIO_PLM[i].RIO_PLM_SP_LONG_CS_TX1 = 0x2003F044;

System_printf("SRIO (Core %i): Correct Output Error Stop Condition.\n", coreNum);

After you have sent messages using the LSU, there is an LSU status register that is very helpful for indicating if the transfer was good or not.

Maintenance Packets:

Here is a short blip of code that I wrote to read a register from the switch via a maintanence packet.  this function will work with the dioIsr example.  Sorry about the formatting.

static Int32 maintanenceReadReg(Srio_SockHandle handle, UInt32srioReg)

{

Srio_SockAddrInfo       to;

uint16_t                compCode;

uint16_t                counter;

int32_t                 startTime;

UInt8 * pReadRespBuf = NULL;

UInt8 * pTmpRead = NULL;

pReadRespBuf = (uint8_t*)Osal_srioDataBufferMalloc(4);

if(pReadRespBuf == NULL)

{

System_printf("Error: pReadRespBuf Memory allocation failed.\n");

}

pTmpRead = pReadRespBuf;

for (counter = 0; counter < 4; counter++)

{

*pTmpRead++ = 0x55;

}

to.dio.rapidIOMSB    = 0x0;

to.dio.rapidIOLSB    = srioReg;//0x0015C;//(uint32_t)&dstDataBufPtr[srcDstBufIdx][0];

to.dio.dstID         = DEVICE_ID4_8BIT;

to.dio.ttype         = 0; //Read

to.dio.ftype         = 8; //Maintanence packets

/* Send the DIO Information. */

if (Srio_sockSend_DIO (handle, pReadRespBuf, 4, (Srio_SockAddrInfo*)&to) < 0)

{

System_printf ("Error: (Core %d): Could not send message.\n", coreNum);

return -1;

}

/* Wait for the interrupt to occur without touching the peripheral. */

/* Other useful work could be done here such as by invoking a scheduler */

startTime = TSCL;

while((! srioLsuIsrServiced) && ((TSCL - startTime) < SRIO_DIO_LSU_ISR_TIMEOUT));

if (! srioLsuIsrServiced) {

System_printf ("ISR didn't happen within set time - %d cycles. Example failed !!!\n", SRIO_DIO_LSU_ISR_TIMEOUT);

return -1;

}

Osal_srioDataBufferFree(pReadRespBuf, 4);

return 0;

}

Calling the function:

maintanenceReadReg(mySrioSocket, 0x15C);

CSL_SRIO_ClearLSUPendingInterrupt (hSrioCSL, 0xFFFFFFFF, 0xFFFFFFFF);

srioLsuIsrServiced = 0;

This clearingLSUPending interrupt is important - it has to happen after each transmission (at least in this example).

Various Other Posts to check:

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/168310.aspx

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/168310.aspx

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/167006.aspx

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/f/639/t/165949.aspx

I am sure I have forgotten a few things but hopefully this will get you started and post away, hopefully Travis, Derek or Karthik will see it and be able to help!

Good luck!

Brandy

PS - thanks again guys, it feels great to be moving forward!!

C6678 srio communication via Switch的更多相关文章

  1. SRIO调试(C6678->SRIO和Virtex6->FPGA)

    C6678->SRIO和Virtex6->FPGA   设计的板子到了SRIO调试阶段了,在板子上,一片V6和两片6678通过4XSRIO互联,中间没有Switch,总算搞定了相互之间的通 ...

  2. Communication - 02.Call U

    App层 从大拇哥Click CallButton开始手机便已明白,主人这是要打电话.当然,你可以选择直接拨号,也可以通过ContactList,或者从通话记录着手.这些都只是UI的设计不同而已,终归 ...

  3. Linux Communication Mechanism Summarize

    目录 . Linux通信机制分类简介 . 控制机制 0x1: 竞态条件 0x2: 临界区 . Inter-Process Communication (IPC) mechanisms: 进程间通信机制 ...

  4. Learning WCF Chapter 3 Bindings One-Way and Duplex Communication

    One-Way and Duplex Communication A message exchange pattern describes the way messages are sent betw ...

  5. Context Switch Definition

    A context switch (also sometimes referred to as a process switch or a task switch) is the switching ...

  6. c#进程间通信(Inter-Process Communication)

    原文:c#进程间通信(Inter-Process Communication) c#进程间通信(IPC, Inter-Process Communication) 接收端: using System; ...

  7. 关于C6678的网口问题

    1.C6678 Keystone1架构的GbE switch subsystem如图所示: 2.从图中可以看到MAC层与物理层PHY芯片的连接接口是由SGMII+SerDES构成,SGMII是以太网M ...

  8. [转]Peer-to-Peer Communication Across Network Address Translators

    Peer-to-Peer Communication Across Network Address Translators Bryan Ford Massachusetts Institute of ...

  9. ROS 进阶学习笔记(12) - Communication with ROS through USART Serial Port

    Communication with ROS through USART Serial Port We always need to communicate with ROS through seri ...

随机推荐

  1. Oracle12c版64位客户端安装步骤(32位安装步骤一样)

    1.双击setup.exe文件 2.下一步 3.下一步   4.安装 5.完成

  2. IDEA生成serialVersionUID的警告

    默认情况下Intellij IDEA是关闭了继承了java.io.Serializable的类生成serialVersionUID的警告.如果需要ide提示生成serialVersionUID,那么需 ...

  3. Maven入门----MyEclipse创建maven项目(二)

    新建项目: Next next next 新建项目后,MyEclipse会自动从远程仓库中下载支持包,需要几分钟左右时间. 项目结构图: HelloWorld.java public class He ...

  4. 关于Python导入其他目录中的类

    在需要导入的某个类的目录中,添加一个__init__.py的文件,

  5. usb设备驱动程序

    韦老师写的,供参考 /*  * drivers\hid\usbhid\usbmouse.c  */ #include <linux/kernel.h> #include <linux ...

  6. 为何指针初始化为NULL

    指针初始化为NULL,指向NULL指针区(大小64K),如果读取或写入这个地址,会引发内存写保护异常 版权声明:本文为博主原创文章,未经博主允许不得转载.

  7. [Android]异步任务AsyncTask使用解析

    AsyncTask主要用来更新UI线程,比较耗时的操作可以在AsyncTask中使用. AsyncTask是个抽象类,使用时需要继承这个类,然后调用execute()方法.注意继承时需要设定三个泛型P ...

  8. 【phonegap】用本地浏览器打开网页

    <a id="ssl2" href="#" onclick="openLocalExplorer()">请点击跳到页面</ ...

  9. Playbooks 中的错误处理

    Topics Playbooks 中的错误处理 忽略错误的命令 控制对失败的定义 覆写更改结果 Ansible 通常默认会确保检测模块和命令的返回码并且会快速失败 – 专注于一个错误除非你另作打算. ...

  10. Three.js会飞走飞回来的鸟

    效果图 demo import './index.css'; // stats var stats; (function(){ stats = new Stats(); document.body.a ...