[CF392E]Deleting Substrings
“unexpected, right?”大概可以翻译成“没想到吧!”
题意:给两个序列$w_{1\cdots n}$和$v_{1\cdots n}$,你可以多次删除$w$的子串$w_{l\cdots r}$并获得$v_{r-l+1}$分,被删除的$w_{l\cdots r}$要满足:对$\forall i\in[l,r-1]$有$|w_i-w_{i+1}|=1$且对$\forall i\in[l+1,r-1]$有$2w_i-w_{i-1}-w_{i+1}\geq0$,问最多获得多少分
说白了就是只能删(连续上升的/连续下降的/先连续上升后连续下降的)
设$f_{i,j}$表示删完$w_{i\cdots j}$的最大分数,$g_{i,j,0}$表示把$w_{i\cdots j}$删至连续上升的最大分数,$g_{i,j,1}$表示把$w_{i\cdots j}$删至连续下降的最大分数
$g_{i,j,0}=\max\left\{[w_{j-1}+1=w_j]g_{i,j-1,0},\mathop\max\limits_{k=i}^{j-2}\left\{[w_k+1=w_j](g_{i,k,0}+f_{k+1,j-1})\right\}\right\}$(可以直接在$w_{i\cdots j-1}$后加上$w_j$,也可以从中间选一个位置$k$,把$w_{k+1\cdots j-1}$删完,再接上$w_j$)
$g_{i,j,1}=\max\left\{[w_{j-1}-1=w_j]g_{i,j-1,1},\mathop\max\limits_{k=i}^{j-2}\left\{[w_k-1=w_j](g_{i,k,1}+f_{k+1,j-1})\right\}\right\}$(同理)
$f_{i,j}=\max\left\{\begin{matrix}[1\leq w_j-w_i+1\leq n](g_{i,j,0}+v_{w_j-w_i+1})\\ [1\leq w_i-w_j+1\leq n](g_{i,j,1}+v_{w_i-w_j+1})\\\mathop\max\limits_{k=i}^{j-1}\left\{f_{i,k}+f_{k+1,j}\right\}\\\mathop\max\limits_{k=i+1}^{j-1}\left\{[1\leq2w_k-w_i-w_j+1\leq n]g_{i,k,0}+g_{k,j,1}+v_{2w_k-w_i-w_j+1}\right\}\end{matrix}\right\}$(可以先删成连续上升或连续下降再直接删除,也可以先删$w_{i\cdots k}$再删$w_{k+1\cdots j}$,还可以先删成上升下降再整段删除)
最后再DP求出最大的$[i,j]$互不相交的$f_{i,j}$之和即可
#include<stdio.h>
const int inf=100000000;
int v[410],w[410],f[410][410],g[410][410][2],ans[410];
void max(int&a,int b){
if(a<b)a=b;
}
int main(){
int n,i,j,k;
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%d",v+i);
for(i=1;i<=n;i++)scanf("%d",w+i);
for(i=1;i<=n;i++){
for(j=1;j<=n;j++)f[i][j]=g[i][j][0]=g[i][j][1]=-inf;
}
for(i=n;i>0;i--){
f[i][i]=v[1];
g[i][i][0]=g[i][i][1]=0;
for(j=i+1;j<=n;j++){
for(k=i;k<j-1;k++){
if(w[k]+1==w[j])max(g[i][j][0],g[i][k][0]+f[k+1][j-1]);
}
if(w[j-1]+1==w[j])max(g[i][j][0],g[i][j-1][0]);
}
for(j=i+1;j<=n;j++){
for(k=i;k<j-1;k++){
if(w[k]-1==w[j])max(g[i][j][1],g[i][k][1]+f[k+1][j-1]);
}
if(w[j-1]-1==w[j])max(g[i][j][1],g[i][j-1][1]);
}
for(j=i;j<=n;j++){
if(w[j]-w[i]+1>0&&w[j]-w[i]+1<=n)max(f[i][j],g[i][j][0]+v[w[j]-w[i]+1]);
if(w[i]-w[j]+1>0&&w[i]-w[j]+1<=n)max(f[i][j],g[i][j][1]+v[w[i]-w[j]+1]);
for(k=i;k<j;k++)max(f[i][j],f[i][k]+f[k+1][j]);
for(k=i+1;k<j;k++){
if(2*w[k]-w[i]-w[j]+1>0&&2*w[k]-w[i]-w[j]+1<=n)max(f[i][j],g[i][k][0]+g[k][j][1]+v[2*w[k]-w[i]-w[j]+1]);
}
}
}
for(i=1;i<=n;i++){
ans[i]=ans[i-1];
for(j=0;j<i;j++)max(ans[i],ans[j]+f[j+1][i]);
}
printf("%d",ans[n]);
}
[CF392E]Deleting Substrings的更多相关文章
- Codeforces.392E.Deleting Substrings(区间DP)
题目链接 \(Description\) \(Solution\) 合法的子序列只有三种情况:递增,递减,前半部分递增然后一直递减(下去了就不会再上去了)(当然还要都满足\(|a_{i+1}-a_i| ...
- CCPC2018-湖南全国邀请赛 G String Transformation
G.String Transformation 题目描述 Bobo has a string S = s1 s2...sn consists of letter a , b and c . He ca ...
- [LeetCode] Unique Substrings in Wraparound String 封装字符串中的独特子字符串
Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...
- Leetcode: Unique Substrings in Wraparound String
Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...
- 云硬盘error、error deleting、deleting状态(数据库基本操作小记)
起因是发现云硬盘显示删光了,但还是创建不了新的云硬盘,在api节点上用cinder list可以看到已经没有硬盘了,但是创建硬盘时,还是会提示配额满了,这是因为数据库里的记录没有更新,对数据库的操作记 ...
- Failed deleting my ephemeral node
2017-01-05 11:07:39,490 WARN zookeeper.RecoverableZooKeeper: Node /hyperbase1/rs/tw-node1217,60020,1 ...
- CSU-1632 Repeated Substrings (后缀数组)
Description String analysis often arises in applications from biology and chemistry, such as the stu ...
- Refresh recovery area usage data after manually deleting files under recovery area
Original source: http://www.dba-oracle.com/t_v$_flash_recovery_area.htm If you manually delete files ...
- CF451D Count Good Substrings (DP)
Codeforces Round #258 (Div. 2) Count Good Substrings D. Count Good Substrings time limit per test 2 ...
随机推荐
- vm虚拟机 开启时报错 无法打开内核设备“\\.\Global\vmx86”: 系统找不到指定的文件。
解决办法 方案一 1/http://jingyan.baidu.com/article/455a9950aaf4aea167277878.html 方案二 2.http://jingyan.baidu ...
- jquery实现通用结构折叠面板效果
效果截图: 说明:可以任意添加多个类似结构样式,点击标题栏图片对应隐藏.显示. jquery代码: 思路一:基本方法 <script src="http://apps.bdimg.co ...
- 关于fragment点击能穿透问题
本人在做项目的过程中遇到的这个问题,然后就在网上百度了一下,之后也是在csdn上看到博友发过此类问题的解决办法,所以特此重新总结一下,顺便也给自己提个醒,避免出现此类问题.好!下面我们说一下问题: 举 ...
- Nginx配置配置文件详解
文章目录 配置文件 nginx.conf配置文件详解 用于调试.定位问题的配置参数 正常运行必备的配置参数 优化性能的配置参数 事件相关配置 Fastcgi相关配置参数 常需要调整的参数 nginx作 ...
- bzoj3790 manacher算法+贪心
紧跟jk大佬的步伐 这道题哇 因为机器一能生成回文串 所以我们只要用manacher跑一遍求出q[i]这样就把问题转化成了类似线段覆盖的题目 贪心就好了 至于,BIT优化dp我不会所以直接贪心了 注意 ...
- 【BZOJ】1692: [Usaco2007 Dec]队列变换
[算法]字符串hash [题解] 显然如果字母互不相同,贪心取是正确的. 如果存在字母相同,那么就换成比较后缀和前缀嘛. 但是要注意,不是后缀和前缀相同就能直接跳跃,每次必须只推一位. 取模的哈希比自 ...
- HDU 2036 改革春风吹满地 (数学)
题目链接 Problem Description " 改革春风吹满地, 不会AC没关系; 实在不行回老家, 还有一亩三分地. 谢谢!(乐队奏乐)" 话说部分学生心态极好,每天就知道 ...
- bzoj 2820 mobius反演
学了一晚上mobius,终于A了一道了.... 假设枚举到i,质数枚举到p(程序里的prime[j]),要更新A=i*p的信息. 1. p|i 这时A的素数分解式中,p这一项的次数>=2. ...
- 用java实现word转html
由于项目需要,要完成将上传的word文件转成html文件的功能.在网上搜了一下,大致有3种方法:1.用jacob实现 2.用poi实现 3.用openoffice实现. 从网上来看好像jacob用的人 ...
- unbuntu下mount windows共享目录
1)sudo apt-get install smbclient 2)sudo mount -t cifs -o username=wcf@fitme.ai,password=Wsy123456 // ...