“unexpected, right?”大概可以翻译成“没想到吧!”

题意:给两个序列$w_{1\cdots n}$和$v_{1\cdots n}$,你可以多次删除$w$的子串$w_{l\cdots r}$并获得$v_{r-l+1}$分,被删除的$w_{l\cdots r}$要满足:对$\forall i\in[l,r-1]$有$|w_i-w_{i+1}|=1$且对$\forall i\in[l+1,r-1]$有$2w_i-w_{i-1}-w_{i+1}\geq0$,问最多获得多少分

说白了就是只能删(连续上升的/连续下降的/先连续上升后连续下降的)

设$f_{i,j}$表示删完$w_{i\cdots j}$的最大分数,$g_{i,j,0}$表示把$w_{i\cdots j}$删至连续上升的最大分数,$g_{i,j,1}$表示把$w_{i\cdots j}$删至连续下降的最大分数

$g_{i,j,0}=\max\left\{[w_{j-1}+1=w_j]g_{i,j-1,0},\mathop\max\limits_{k=i}^{j-2}\left\{[w_k+1=w_j](g_{i,k,0}+f_{k+1,j-1})\right\}\right\}$(可以直接在$w_{i\cdots j-1}$后加上$w_j$,也可以从中间选一个位置$k$,把$w_{k+1\cdots j-1}$删完,再接上$w_j$)

$g_{i,j,1}=\max\left\{[w_{j-1}-1=w_j]g_{i,j-1,1},\mathop\max\limits_{k=i}^{j-2}\left\{[w_k-1=w_j](g_{i,k,1}+f_{k+1,j-1})\right\}\right\}$(同理)

$f_{i,j}=\max\left\{\begin{matrix}[1\leq w_j-w_i+1\leq n](g_{i,j,0}+v_{w_j-w_i+1})\\ [1\leq w_i-w_j+1\leq n](g_{i,j,1}+v_{w_i-w_j+1})\\\mathop\max\limits_{k=i}^{j-1}\left\{f_{i,k}+f_{k+1,j}\right\}\\\mathop\max\limits_{k=i+1}^{j-1}\left\{[1\leq2w_k-w_i-w_j+1\leq n]g_{i,k,0}+g_{k,j,1}+v_{2w_k-w_i-w_j+1}\right\}\end{matrix}\right\}$(可以先删成连续上升或连续下降再直接删除,也可以先删$w_{i\cdots k}$再删$w_{k+1\cdots j}$,还可以先删成上升下降再整段删除)

最后再DP求出最大的$[i,j]$互不相交的$f_{i,j}$之和即可

#include<stdio.h>
const int inf=100000000;
int v[410],w[410],f[410][410],g[410][410][2],ans[410];
void max(int&a,int b){
	if(a<b)a=b;
}
int main(){
	int n,i,j,k;
	scanf("%d",&n);
	for(i=1;i<=n;i++)scanf("%d",v+i);
	for(i=1;i<=n;i++)scanf("%d",w+i);
	for(i=1;i<=n;i++){
		for(j=1;j<=n;j++)f[i][j]=g[i][j][0]=g[i][j][1]=-inf;
	}
	for(i=n;i>0;i--){
		f[i][i]=v[1];
		g[i][i][0]=g[i][i][1]=0;
		for(j=i+1;j<=n;j++){
			for(k=i;k<j-1;k++){
				if(w[k]+1==w[j])max(g[i][j][0],g[i][k][0]+f[k+1][j-1]);
			}
			if(w[j-1]+1==w[j])max(g[i][j][0],g[i][j-1][0]);
		}
		for(j=i+1;j<=n;j++){
			for(k=i;k<j-1;k++){
				if(w[k]-1==w[j])max(g[i][j][1],g[i][k][1]+f[k+1][j-1]);
			}
			if(w[j-1]-1==w[j])max(g[i][j][1],g[i][j-1][1]);
		}
		for(j=i;j<=n;j++){
			if(w[j]-w[i]+1>0&&w[j]-w[i]+1<=n)max(f[i][j],g[i][j][0]+v[w[j]-w[i]+1]);
			if(w[i]-w[j]+1>0&&w[i]-w[j]+1<=n)max(f[i][j],g[i][j][1]+v[w[i]-w[j]+1]);
			for(k=i;k<j;k++)max(f[i][j],f[i][k]+f[k+1][j]);
			for(k=i+1;k<j;k++){
				if(2*w[k]-w[i]-w[j]+1>0&&2*w[k]-w[i]-w[j]+1<=n)max(f[i][j],g[i][k][0]+g[k][j][1]+v[2*w[k]-w[i]-w[j]+1]);
			}
		}
	}
	for(i=1;i<=n;i++){
		ans[i]=ans[i-1];
		for(j=0;j<i;j++)max(ans[i],ans[j]+f[j+1][i]);
	}
	printf("%d",ans[n]);
}

[CF392E]Deleting Substrings的更多相关文章

  1. Codeforces.392E.Deleting Substrings(区间DP)

    题目链接 \(Description\) \(Solution\) 合法的子序列只有三种情况:递增,递减,前半部分递增然后一直递减(下去了就不会再上去了)(当然还要都满足\(|a_{i+1}-a_i| ...

  2. CCPC2018-湖南全国邀请赛 G String Transformation

    G.String Transformation 题目描述 Bobo has a string S = s1 s2...sn consists of letter a , b and c . He ca ...

  3. [LeetCode] Unique Substrings in Wraparound String 封装字符串中的独特子字符串

    Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...

  4. Leetcode: Unique Substrings in Wraparound String

    Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...

  5. 云硬盘error、error deleting、deleting状态(数据库基本操作小记)

    起因是发现云硬盘显示删光了,但还是创建不了新的云硬盘,在api节点上用cinder list可以看到已经没有硬盘了,但是创建硬盘时,还是会提示配额满了,这是因为数据库里的记录没有更新,对数据库的操作记 ...

  6. Failed deleting my ephemeral node

    2017-01-05 11:07:39,490 WARN zookeeper.RecoverableZooKeeper: Node /hyperbase1/rs/tw-node1217,60020,1 ...

  7. CSU-1632 Repeated Substrings (后缀数组)

    Description String analysis often arises in applications from biology and chemistry, such as the stu ...

  8. Refresh recovery area usage data after manually deleting files under recovery area

    Original source: http://www.dba-oracle.com/t_v$_flash_recovery_area.htm If you manually delete files ...

  9. CF451D Count Good Substrings (DP)

    Codeforces Round #258 (Div. 2) Count Good Substrings D. Count Good Substrings time limit per test 2 ...

随机推荐

  1. vm虚拟机 开启时报错 无法打开内核设备“\\.\Global\vmx86”: 系统找不到指定的文件。

    解决办法 方案一 1/http://jingyan.baidu.com/article/455a9950aaf4aea167277878.html 方案二 2.http://jingyan.baidu ...

  2. jquery实现通用结构折叠面板效果

    效果截图: 说明:可以任意添加多个类似结构样式,点击标题栏图片对应隐藏.显示. jquery代码: 思路一:基本方法 <script src="http://apps.bdimg.co ...

  3. 关于fragment点击能穿透问题

    本人在做项目的过程中遇到的这个问题,然后就在网上百度了一下,之后也是在csdn上看到博友发过此类问题的解决办法,所以特此重新总结一下,顺便也给自己提个醒,避免出现此类问题.好!下面我们说一下问题: 举 ...

  4. Nginx配置配置文件详解

    文章目录 配置文件 nginx.conf配置文件详解 用于调试.定位问题的配置参数 正常运行必备的配置参数 优化性能的配置参数 事件相关配置 Fastcgi相关配置参数 常需要调整的参数 nginx作 ...

  5. bzoj3790 manacher算法+贪心

    紧跟jk大佬的步伐 这道题哇 因为机器一能生成回文串 所以我们只要用manacher跑一遍求出q[i]这样就把问题转化成了类似线段覆盖的题目 贪心就好了 至于,BIT优化dp我不会所以直接贪心了 注意 ...

  6. 【BZOJ】1692: [Usaco2007 Dec]队列变换

    [算法]字符串hash [题解] 显然如果字母互不相同,贪心取是正确的. 如果存在字母相同,那么就换成比较后缀和前缀嘛. 但是要注意,不是后缀和前缀相同就能直接跳跃,每次必须只推一位. 取模的哈希比自 ...

  7. HDU 2036 改革春风吹满地 (数学)

    题目链接 Problem Description " 改革春风吹满地, 不会AC没关系; 实在不行回老家, 还有一亩三分地. 谢谢!(乐队奏乐)" 话说部分学生心态极好,每天就知道 ...

  8. bzoj 2820 mobius反演

    学了一晚上mobius,终于A了一道了.... 假设枚举到i,质数枚举到p(程序里的prime[j]),要更新A=i*p的信息. 1. p|i    这时A的素数分解式中,p这一项的次数>=2. ...

  9. 用java实现word转html

    由于项目需要,要完成将上传的word文件转成html文件的功能.在网上搜了一下,大致有3种方法:1.用jacob实现 2.用poi实现 3.用openoffice实现. 从网上来看好像jacob用的人 ...

  10. unbuntu下mount windows共享目录

    1)sudo apt-get install smbclient 2)sudo mount -t cifs -o username=wcf@fitme.ai,password=Wsy123456 // ...