【数论】【筛法求素数】【欧拉函数】bzoj2818 Gcd
gcd(x,y)(1<=x,y<=n)为素数(暂且把(x,y)和(y,x)算一种) 的个数
<=> gcd(x/k,y/k)=1,k是x的质因数 的个数
<=> Σφ(x/k) (1<=x<=n,k是x的质因子)
这样的复杂度无法接受,
∴我们可以考虑枚举k,计算Σφ(q/k) (k是n以内的质数,q是n以内k的倍数),即Σ[φ(1)+φ(2)+φ(3)+...+φ(p)] (p=n/k)
介个phi的前缀和可以预处理粗来。
但是(x,y)和(y,x)并不同,所以在计算前缀和的时候,对于φ(x) (x≠1),要乘2再累加,即Σ[φ(1)+φ(2)*2+φ(3)*2+...+φ(p)*2] (p=n/k)。
∴对每个n以内的素数,我们可以O(1)地得到其对答案的贡献。
∴时间复杂度花费在筛素数和预处理phi上,为O(n*log(log(n)))或O(n)[线性筛]。
#include<cstdio>
using namespace std;
typedef long long ll;
int phi[],n;
bool unPrime[];
ll ans,sum[];
void Shai_Prime()
{
unPrime[]=;
for(ll i=;i<=n;i++) if(!unPrime[i])
{
ans+=sum[n/i];
for(ll j=i*i;j<=n;j+=i)
unPrime[j]=;
}
}
void phi_table()
{
phi[]=;//规定phi(1)=1;
for(int i=;i<=n;i++)
if(!phi[i])//若i是质数(类似筛法的思想)
for(int j=i;j<=n;j+=i)//i一定是j的质因数
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
void init_sum()
{
sum[]=phi[];
for(int i=;i<=n;i++) sum[i]=(ll)(phi[i]<<)+sum[i-];
}
int main()
{
scanf("%d",&n); phi_table(); init_sum(); Shai_Prime();
printf("%lld\n",ans);
return ;
}
【数论】【筛法求素数】【欧拉函数】bzoj2818 Gcd的更多相关文章
- √n求单值欧拉函数
基本定理: 首先看一下核心代码: 核心代码 原理解析: 当初我看不懂这段代码,主要有这么几个问题: 1.定理里面不是一开始写了一个n*xxx么?为什么代码里没有*n? 2.ans不是*(prime[i ...
- 素数&欧拉函数
素数表 const int maxN找[1,maxN)内的素数 int prime[int I]第I个素数 const int maxN=1e5+5; int prime[maxN]; bool ma ...
- 求逆欧拉函数(arc)
已知欧拉函数计算公式 初始公式:φ(n)=n*(1-1/p1)*(1-1/p2).....*(1-1/pm) 又 n=p1^a1*p2^a2*...*ps^as 欧拉函数是积性函数 那么:φ(n ...
- (数论)51NOD 1136 欧拉函数
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...
- hdu (欧拉函数+容斥原理) GCD
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...
- Longge's problem poj2480 欧拉函数,gcd
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6918 Accepted: 2234 ...
- GCD - Extreme (II) UVA - 11426 欧拉函数与gcd
题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求
筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1, ...
- BZOJ 2818 GCD 素数筛+欧拉函数+前缀和
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...
随机推荐
- [poj 3281]最大流+建图很巧妙
题目链接:http://poj.org/problem?id=3281 看了kuangbin大佬的思路,还用着kuangbin板子orz http://www.cnblogs.com/kuangb ...
- fastjson对json操作
fastjson对json字符串JSONObject和JSONArray互相转换操作示例 fastjson的方法: Fastjson API入口类是com.alibaba.fastjson.JSON ...
- Bash 实例,第一部分
您可能要问:为什么要学习 Bash 编程?好,以下是几条令人信服的理由: 已经在运行它 如果查看一下,可能会发现:您现在正在运行 bash.因为 bash 是标准 Linux shell,并用于各种目 ...
- ssh中的相对路径与绝对路径的问题
一:前言:自己在学习ssh的时候常常被路径给迷惑,就比如在刚刚学习jsp的servlet时,绝对路径和相对路径我就弄混了,所以专门写了一篇博客来记载.而现在自己是在学ssh的时候在此遇到路径问题,本来 ...
- CentOS7 Tomcat 启动过程很慢,JVM上的随机数与熵池策略
1. CentOS7 Tomcat 启动过程很慢 在centos启动官方的tomcat时,启动过程很慢,需要几分钟,经过查看日志,发现耗时在这里:是session引起的随机数问题导致的: <co ...
- 稀疏编码概率解释(基于1996年Olshausen与Field的理论 )
一.Sparse Coding稀疏编码 稀疏编码算法是一种无监督学习方法,它用来寻找一组“超完备”基向量来更高效地表示样本数据.稀疏编码算法的目的就是找到一组基向量 ,使得我们能将输入向量 表示为这些 ...
- NYOJ 115 城市平乱 (最短路)
* 题目链接* 描述 南将军统领着N个部队,这N个部队分别驻扎在N个不同的城市. 他在用这N个部队维护着M个城市的治安,这M个城市分别编号从1到M. 现在,小工军师告诉南将军,第K号城市发生了暴乱,南 ...
- 哈希Hash在字符串中的应用_C++
本文含有原创题,涉及版权利益问题,严禁转载,违者追究法律责任 哈希大家都会用撒,字符串显然都会写撒,那么哈希离散化字符串不就懂了?!(XXX的神逻辑,其实原文是:树都晓得吧,数组显然都会开呀,那么恭喜 ...
- vue this.$router.push 页面不刷新
解决办法: 使用 watch,观察路由,发生变化重新获取数据 <script> export default { data() { return { data: {} } }, metho ...
- 在ubuntu 上面安装ubuntu touch 模拟器
Canonical 公司已经发布了一个运行着Unity8和Mir的Ubuntu Touch模拟器.虽然有一些bug,例如在64位的系统上会使系统崩溃,但我们相信这些都会被一 一修复,这篇文章将教大家如 ...