【数论】【筛法求素数】【欧拉函数】bzoj2818 Gcd
gcd(x,y)(1<=x,y<=n)为素数(暂且把(x,y)和(y,x)算一种) 的个数
<=> gcd(x/k,y/k)=1,k是x的质因数 的个数
<=> Σφ(x/k) (1<=x<=n,k是x的质因子)
这样的复杂度无法接受,
∴我们可以考虑枚举k,计算Σφ(q/k) (k是n以内的质数,q是n以内k的倍数),即Σ[φ(1)+φ(2)+φ(3)+...+φ(p)] (p=n/k)
介个phi的前缀和可以预处理粗来。
但是(x,y)和(y,x)并不同,所以在计算前缀和的时候,对于φ(x) (x≠1),要乘2再累加,即Σ[φ(1)+φ(2)*2+φ(3)*2+...+φ(p)*2] (p=n/k)。
∴对每个n以内的素数,我们可以O(1)地得到其对答案的贡献。
∴时间复杂度花费在筛素数和预处理phi上,为O(n*log(log(n)))或O(n)[线性筛]。
#include<cstdio>
using namespace std;
typedef long long ll;
int phi[],n;
bool unPrime[];
ll ans,sum[];
void Shai_Prime()
{
unPrime[]=;
for(ll i=;i<=n;i++) if(!unPrime[i])
{
ans+=sum[n/i];
for(ll j=i*i;j<=n;j+=i)
unPrime[j]=;
}
}
void phi_table()
{
phi[]=;//规定phi(1)=1;
for(int i=;i<=n;i++)
if(!phi[i])//若i是质数(类似筛法的思想)
for(int j=i;j<=n;j+=i)//i一定是j的质因数
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
void init_sum()
{
sum[]=phi[];
for(int i=;i<=n;i++) sum[i]=(ll)(phi[i]<<)+sum[i-];
}
int main()
{
scanf("%d",&n); phi_table(); init_sum(); Shai_Prime();
printf("%lld\n",ans);
return ;
}
【数论】【筛法求素数】【欧拉函数】bzoj2818 Gcd的更多相关文章
- √n求单值欧拉函数
基本定理: 首先看一下核心代码: 核心代码 原理解析: 当初我看不懂这段代码,主要有这么几个问题: 1.定理里面不是一开始写了一个n*xxx么?为什么代码里没有*n? 2.ans不是*(prime[i ...
- 素数&欧拉函数
素数表 const int maxN找[1,maxN)内的素数 int prime[int I]第I个素数 const int maxN=1e5+5; int prime[maxN]; bool ma ...
- 求逆欧拉函数(arc)
已知欧拉函数计算公式 初始公式:φ(n)=n*(1-1/p1)*(1-1/p2).....*(1-1/pm) 又 n=p1^a1*p2^a2*...*ps^as 欧拉函数是积性函数 那么:φ(n ...
- (数论)51NOD 1136 欧拉函数
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...
- hdu (欧拉函数+容斥原理) GCD
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...
- Longge's problem poj2480 欧拉函数,gcd
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6918 Accepted: 2234 ...
- GCD - Extreme (II) UVA - 11426 欧拉函数与gcd
题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求
筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1, ...
- BZOJ 2818 GCD 素数筛+欧拉函数+前缀和
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...
随机推荐
- vue遇到的坑(一)——数组更新
最近在项目中遇到个问题,数组已经更新了,但是页面中的DOM并没有触发变化.我一直以来的想法就是: 既然vue实现的实时数据双向绑定,那么在model层发生了变化之后为什么就没有在view层更新呢? 在 ...
- [ CodeVS冲杯之路 ] P2492
不充钱,你怎么AC? 题目:http://codevs.cn/problem/2492/ 在此先orz小胖子,教我怎么路径压缩链表,那么这样就可以在任意节点跳进链表啦(手动@LCF) 对于查询操作,直 ...
- 微信小程序登录流程图
一. 官方登录时序图 官方的登录时序图 二. 简单理解 这里仅按照官方推荐的规范来 0. 前置条件 一共有三端: - 微信小程序客户端 - 第三方服务器端- 微信服务器端 1. 客户端获得code,并 ...
- WC后记
这次去WC本来就是抱着玩儿玩儿的心态去的,结果真算是玩儿了... 我们去的内天北京正好下雪,结果后来等我舅接我们去八十中的时候还在外面等了半个小时,其实雪天在外面挺好的,除了旁边都是一些男程序员.后来 ...
- JS组件入门
用React感觉component老好用了. 那如何用原生JS来模拟实现React中的component方法呢:http://huziketang.com/blog/posts/detail?post ...
- hdu 2112 HDU Today (最短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2112 题目大意:给出起点和终点,然后算出最短的路. 不过有好多细节要注意: (1)起始点和终止点相等的 ...
- Linux XZ格式的解压
xz这个压缩可能很多都很陌生,不过您可知道xz是绝大数linux默认就带的一个压缩工具. 之前xz使用一直很少,所以几乎没有什么提起. 我是在下载phpmyadmin的时候看到这种压缩格式的,phpm ...
- (转)自动安装VIM插件
转自: http://xwz.me/wiki/doku.php?id=vim:plugins 我的插件列表 把下面GetLatestVimScripts.dat放进~/.vim/GetLatest/目 ...
- 关于EINTR错误的理解【转】
转自:http://www.xuebuyuan.com/1470645.html 最近在工作中遇到了EINTR错误,感到比较困惑,几番研究之后,颇有心得和收获,特记录如下,便于以后查询,也给有同样困惑 ...
- IC卡的传输协议(3)【转】
转自:http://bbs.ednchina.com/BLOG_ARTICLE_172027.HTM 3.终端传输层 本节描述了在终端和 IC 卡之间传输的命令和响应 APDU 的机制 ...