题意就是求一个n个点的堆的合法形态数。

显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的。

设以i为根的堆的形态数为F(i),所以F(i)+=F(sz[2*i])*F(sz[2*i+1])*C(sz[i]-1,sz[2*i])。直接DP即可。

有个令人无语的坑,n可能大于p,要用Lucas。

还有求阶乘逆元的时候根本不需要用快速幂算出fac[n]的逆元再逆推回去,直接跟阶乘一样顺推就好了。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int n,p,fac[N],inv[N],Fin[N],s[N],f[N]; int C(int n,int m){
if (n<m) return ;
if (n<p && m<p) return 1ll*fac[n]*Fin[m]%p*Fin[n-m]%p;
return 1ll*C(n/p,m/p)*C(n%p,m%p)%p;
} int main(){
freopen("bzoj2111.in","r",stdin);
freopen("bzoj2111.out","w",stdout);
scanf("%d%d",&n,&p); int m=min(n,p);
fac[]=; rep(i,,m) fac[i]=1ll*fac[i-]*i%p;
inv[]=; rep(i,,m) inv[i]=1ll*(p-p/i)*inv[p%i]%p;
Fin[]=; rep(i,,m) Fin[i]=1ll*Fin[i-]*inv[i]%p;
for (int i=n; i; i--){
s[i]=s[i<<]+s[(i<<)|]+;
f[i]=1ll*((i<<)>n?:f[i<<])*((i<<|)>n?:f[i<<|])%p*C(s[i]-,s[i<<])%p;
}
printf("%d\n",f[]);
return ;
}

[BZOJ2111][ZJOI2010]Perm排列计数(组合数学)的更多相关文章

  1. [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)

    题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...

  2. BZOJ2111: [ZJOI2010]Perm 排列计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...

  3. [bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型

    题目大意 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  4. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  5. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  6. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  7. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  8. BZOJ_2111_[ZJOI2010]Perm 排列计数_树形DP+组合数学

    Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...

  9. 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...

随机推荐

  1. 自己模拟实现一下Google的赛马Doodle

    今天的Google Doodle是个动态的,是一个骑马的动态Doodle,是谷歌纪念英国实验摄影师埃德沃德·迈布里奇182周年诞辰,埃德沃德·迈布里奇是运动摄影的开创者,所以谷歌涂鸦以一个运动的摄影作 ...

  2. Educational Codeforces Round 59 (Rated for Div. 2) DE题解

    Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...

  3. namesilo注册域名用来做域名邮箱

    重要的话说三遍: (一定不要再国内注册域名,不要买国内的空间) (一定不要再国内注册域名,不要买国内的空间) (一定不要再国内注册域名,不要买国内的空间) 使用的是腾讯企业邮箱,有一个缺点:不支持自定 ...

  4. Eclipse工具栏太多,自定义工具栏,去掉调试

    Window --> Customize Perspective... --> Tool Bar Visibility 去掉勾选debug  Tip:最新版本Customize Persp ...

  5. Makefile PHONY

    case 1: Makefile clean: rm a environment_1 : There is only file a $ make clean clean a environment_2 ...

  6. python--requests_html

    这个模块从名字上也能看出来,是专门用来解析html的,这个和requests的作者是同一人,非常牛逼的一位大佬. 大致读了一下源码,总共一个py文件(但是引用了其他的模块),加上注释总共才700多行, ...

  7. [ Openstack ] Openstack-Mitaka 高可用之 环境初始化

    目录 Openstack-Mitaka 高可用之 概述    Openstack-Mitaka 高可用之 环境初始化    Openstack-Mitaka 高可用之 Mariadb-Galera集群 ...

  8. discuz自定义生成单页面

    在pc端,若要生成一个单页面,有一个比较方便的方法是生成新的专题页,然后diy其中的内容. 不过这种做法有两个缺点 1 url太过冗赘 2 只有一个插入url代码功能,没有文本编辑功能 而且文本框小的 ...

  9. 配置WCF

    出处:http://blog.csdn.net/fangxing80/article/details/6106228 前面一篇文章<WCF 学习总结1 -- 简单实例>一股脑儿展示了几种W ...

  10. hdu4240 求一条流量最大的路/(此题网上百分之90以上算法是错误的)

    题意:求最大流/一条流量最大的路的流量.(此题HDU上数据水,下面俩种错误的都能过....) 思路1;每次增广的时候更新流量,保存最大的那条.  错误性:每次更新,有可能最大的那条流量是前几次已经增广 ...