[BZOJ2111][ZJOI2010]Perm排列计数(组合数学)
题意就是求一个n个点的堆的合法形态数。
显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的。
设以i为根的堆的形态数为F(i),所以F(i)+=F(sz[2*i])*F(sz[2*i+1])*C(sz[i]-1,sz[2*i])。直接DP即可。
有个令人无语的坑,n可能大于p,要用Lucas。
还有求阶乘逆元的时候根本不需要用快速幂算出fac[n]的逆元再逆推回去,直接跟阶乘一样顺推就好了。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int n,p,fac[N],inv[N],Fin[N],s[N],f[N]; int C(int n,int m){
if (n<m) return ;
if (n<p && m<p) return 1ll*fac[n]*Fin[m]%p*Fin[n-m]%p;
return 1ll*C(n/p,m/p)*C(n%p,m%p)%p;
} int main(){
freopen("bzoj2111.in","r",stdin);
freopen("bzoj2111.out","w",stdout);
scanf("%d%d",&n,&p); int m=min(n,p);
fac[]=; rep(i,,m) fac[i]=1ll*fac[i-]*i%p;
inv[]=; rep(i,,m) inv[i]=1ll*(p-p/i)*inv[p%i]%p;
Fin[]=; rep(i,,m) Fin[i]=1ll*Fin[i-]*inv[i]%p;
for (int i=n; i; i--){
s[i]=s[i<<]+s[(i<<)|]+;
f[i]=1ll*((i<<)>n?:f[i<<])*((i<<|)>n?:f[i<<|])%p*C(s[i]-,s[i<<])%p;
}
printf("%d\n",f[]);
return ;
}
[BZOJ2111][ZJOI2010]Perm排列计数(组合数学)的更多相关文章
- [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)
题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...
- BZOJ2111: [ZJOI2010]Perm 排列计数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...
- [bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型
题目大意 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数
[BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- BZOJ_2111_[ZJOI2010]Perm 排列计数_树形DP+组合数学
Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...
- 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...
随机推荐
- Bash script: report largest InnoDB files
The following script will report the largest InnoDB tables under the data directory: schema, table & ...
- io流中的装饰模式对理解io流的重要性
为了说明 io流中的装饰者模式对理解io流的重要性,我想先简要介绍以下io的装饰模式. 装饰(decorator)你也可以翻译成修饰.比如:一个会精通化学数学的物理学家.在这个"物理学家&q ...
- java的GC与内存泄漏
从诞生至今,20多年过去,Java至今仍是使用最为广泛的语言.这仰赖于Java提供的各种技术和特性,让开发人员能优雅的编写高效的程序.今天我们就来说说Java的一项基本但非常重要的技术内存管理 了解C ...
- jsonp应用
1.服务端jsonp格式数据 如客户想访问 : http://www.runoob.com/try/ajax/jsonp.php?jsonp=callbackFunction. 假设客户期望返回JSO ...
- Java并发(10)- 简单聊聊JDK中的七大阻塞队列
引言 JDK中除了上文提到的各种并发容器,还提供了丰富的阻塞队列.阻塞队列统一实现了BlockingQueue接口,BlockingQueue接口在java.util包Queue接口的基础上提供了pu ...
- 有关eclipse的内存溢出问题
一:前言 最近在做的项目在启动tomcat时就报“内存溢出的错误”,其实也不是自己第一次遇到,但是每次都是在网上查询后敲进去,所以这次我觉得自己记载下来吧. 二:内容 我自己的配置大小,这里的配置位置 ...
- L2-001. 紧急救援---(Dijkstra,记录路径)
https://www.patest.cn/contests/gplt/L2-001 L2-001. 紧急救援 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 ...
- bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401
这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...
- GIT 使用 osc 在线托管
今天一看,osc的代码托管自己开了2年了,csdn的代码托管也开了3年了,只是项目里有几个了了就是fork来的,自己的也没认真写,之前工作也用git,现在改用自己的git了. 所以就把Key-gen ...
- 在Unity(C#)下实现Lazy Theta*寻路
在上篇文章中我们介绍了Lazy Theta*.本篇中我会演示一下我实现的Lazy Theta*. 先上代码 //在一个点被expand时是否调用DebugOnExpanded事件,用于debug查看e ...