【AT2434】JOI 公園 (JOI Park) 最短路+贪心
题解
我的歪解
我首先想的是分治,我想二分肯定不行,因为它是没有单调性的。
我想了一下感觉它的大部分数据应该是有凸性的(例如\(y=x^2\)的函数图像),所以可以三分。
下面是我的三分代码(骗了不少分)
三分模板没过的我居然瞎歪歪了一个三分
歪解code:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<queue>
#define ll long long
#define R register
#define N 400005
#define INF 0x7fffffffffffLL
using namespace std;
template<typename T>inline void read(T &a){
char c=getchar();T x=0,f=1;
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
a=f*x;
}
ll n,m,c,tot,h[N],vis[N],pd[N];
ll dist[N],sum,now_ans,now;
struct bian{
int u,v;
ll w;
}b[N];
struct node{
int nex,to;
ll dis;
}edge[N<<1];
inline void add(R int u,R int v,R ll w){
edge[++tot].nex=h[u];
edge[tot].to=v;
edge[tot].dis=w;
h[u]=tot;
}
inline void spfa(R int s){
for(R int i=1;i<=n;i++)dist[i]=INF;
queue<int> q;q.push(s);dist[s]=0;vis[s]=1;
while(!q.empty()){
R int x=q.front();q.pop();vis[x]=0;
for(R int i=h[x];i;i=edge[i].nex){
R int xx=edge[i].to;
if(dist[xx]>dist[x]+edge[i].dis){
dist[xx]=dist[x]+edge[i].dis;
if(!vis[xx]){
vis[xx]=1;
q.push(xx);
}
}
}
}
}
inline ll check(R ll mid){
ll tot=0;
for(R int i=1;i<=n;i++)pd[i]=0;
for(R int i=1;i<=n;i++)
if(dist[i]<=mid)pd[i]=1;
for(R int i=1;i<=m;i++)
if(pd[b[i].u]&&pd[b[i].v])
tot+=b[i].w;
return tot-mid*c;//这是你能节省的
}
int main(){
read(n);read(m);read(c);
for(R int i=1;i<=m;i++){
read(b[i].u);read(b[i].v);read(b[i].w);
add(b[i].u,b[i].v,b[i].w);add(b[i].v,b[i].u,b[i].w);sum+=b[i].w;
}
spfa(1);
R ll l=0,r=sum;
while(l<=r){
R ll tmp=(r-l)/3;
R ll mid1=l+tmp;
R ll mid2=r-tmp;
if(check(mid1)>check(mid2)) r=mid2-1;
else l=mid1+1;
}
ll tmp=check(l),temp=check(r);
if(tmp>temp)now=l,now_ans=tmp;
else now=r,now_ans=temp;
printf("%lld\n",sum-now_ans);
return 0;
}
当然了,三分本来就是一个非常好的骗分算法(也会是正解),有些题在加一些暴力,一定会有神奇的效果;
讲课老师说加上暴力这道题应该可以\(A\)掉,但懒惰的我并没有去实践,有兴趣的可以试一试;
正解
这其实是一道经典的最短路的一种题型。
先跑一遍\(SPFA\),处理出\(dist\)数组;
然后再利用\(dist\)数组处理出每一条边的\(maxdis\);
将\(maxdis\)数组从小到大排序(结构体排序);

看完图应该都懂了吧。
code:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<queue>
#define ll long long
#define R register
#define N 800005
#define int long long
#define INF 9999999999999999LL
using namespace std;
template<typename T>inline void read(T &a){
char c=getchar();T x=0,f=1;
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
a=f*x;
}
ll n,m,c,tot,h[N],vis[N],pd[N],maxdis[N];
ll dist[N],sum,ans,maxsum;
struct bian{
int u,v,w;
}b[N];
struct node{
int nex,to,dis;
}edge[N<<1];
struct MAX{
int maxdis,id;
friend bool operator < (const MAX &a,const MAX &b){
return a.maxdis<b.maxdis;
}
}md[N];
inline void add(R int u,R int v,R int w){
edge[++tot].nex=h[u];
edge[tot].to=v;
edge[tot].dis=w;
h[u]=tot;
}
inline void spfa(R int s){
for(R int i=1;i<=n;i++)dist[i]=INF;
queue<int> q;q.push(s);dist[s]=0;vis[s]=1;
while(!q.empty()){
R int x=q.front();q.pop();vis[x]=0;
for(R int i=h[x];i;i=edge[i].nex){
R int xx=edge[i].to;
if(dist[xx]>dist[x]+edge[i].dis){
dist[xx]=dist[x]+edge[i].dis;
if(!vis[xx]){
vis[xx]=1;
q.push(xx);
}
}
}
}
}
signed main(){
read(n);read(m);read(c);
for(R int i=1;i<=m;i++){
read(b[i].u);read(b[i].v);read(b[i].w);
add(b[i].u,b[i].v,b[i].w);add(b[i].v,b[i].u,b[i].w);sum+=b[i].w;
}
spfa(1);
for(R int i=1;i<=m;i++)
md[i].maxdis=max(dist[b[i].u],dist[b[i].v]),md[i].id=i;
sort(md+1,md+1+m);
ans=sum;
for(R int i=1;i<=m;i++){
sum-=b[md[i].id].w;
ans=min(ans,1LL*md[i].maxdis*c+sum);
}
printf("%lld\n",ans);
return 0;
}
【AT2434】JOI 公園 (JOI Park) 最短路+贪心的更多相关文章
- 洛谷 AT2434 JOI 公園 (JOI Park) 题解
人生第一次AC黑题,我太感动了. 每日一题 day31 打卡 Analysis 先跑遍DJ,求出1到 i的最短路.得到每个点到 1号点的距离后,从小到大排序一遍,这时便可以枚举每个点到 1号点的距离修 ...
- Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心
题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...
- HDU2363 最短路+贪心
Cycling Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- Codeforces 1076D Edge Deletion 【最短路+贪心】
<题目链接> 题目大意: n个点,m条边的无向图,现在需要删除一些边,使得剩下的边数不能超过K条.1点为起点,如果1到 i 点的最短距离与删除边之前的最短距离相同,则称 i 为 " ...
- 【CF1076D】Edge Deletion 最短路+贪心
题目大意:给定 N 个点 M 条边的无向简单联通图,留下最多 K 条边,求剩下的点里面从 1 号顶点到其余各点最短路大小等于原先最短路大小的点最多怎么构造. 题解:我们可以在第一次跑 dij 时直接采 ...
- Codeforces 545E. Paths and Trees[最短路+贪心]
[题目大意] 题目将从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 题目要求一颗最短生成树,输出总边权和与选取边的编号.[题意分析] 比如下面的数据: 5 5 1 2 2 ...
- Forethought Future Cup - Elimination Round D 贡献 + 推公式 + 最短路 + 贪心
https://codeforces.com/contest/1146/problem/D 题意 有一只青蛙,一开始在0位置上,每次可以向前跳a,或者向后跳b,定义\(f(x)\)为青蛙在不跳出区间[ ...
- Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)
题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...
- [CSP-S模拟测试]:任务分配(最短路+贪心+DP)
题目传送门(内部题149) 输入格式 每个测试点第一行为四个正整数$n,b,s,m$,含义如题目所述. 接下来$m$行,每行三个非负整数$u,v,l$,表示从点$u$到点$v$有一条权值为$l$的有向 ...
随机推荐
- s3c6410存储器映射
1.引导镜像区 0x0000_0000~0x07FF_FFFF 2.内部存储区 (1) 内部ROM 0x0800_0000~0x0BFF_FFFF (2) 内部SRAM 0x0C00_0000~0x0 ...
- Theos初步
[Theos初步] 1.安装Theos.Theos需要在mac和ios上均安装,ios上安装的是Theos服务器,以使得mac的thoes可以直接安装app到ios设备上.如果不需要使用此功能,则仅安 ...
- 如何上传网站程序(文件浏览器上传网页、FileZilla上传网站程序)
问题场景: 网页制作完成后,程序需上传至虚拟主机. 注意事项: Windows系统的主机请将全部网页文件直接上传到FTP根目录,即 / . Linux系统的主机请将全部网页文件直接上传到 /htdoc ...
- Spring中使用Velocity模板
使用Velocity模板 Velocity是一种针对Java应用的易用的模板语言.Velocity模板中没有任何 Java代码,这使得它能够同时被非开发人员和开发人员轻松地理解.Velocity的用户 ...
- sfidsk创建可启动分区问题
前言 由于工作上需要经常要为嵌入式设备制作启动SD卡,因此本人使用sfdisk编写了自动分区.格式化和安装文件的脚本.(不选择fdisk是因为它是为用户交互设计的,在脚本上使用不够方便) 实际使用过程 ...
- pandas dataframe 满足条件的样本提取
pandas 的dataframe 对 数据查询可以通过3种方式 . 预备知识: 1. pandas 的索引和label都是从0开始的计数的 2. 时间切片都是左闭右开的. [5:6,:] 只会输出 ...
- hdu1269 Tarjan强连通分量 模板(转)
#include<stdio.h> #include<iostream> #include<vector> using namespace std; ; vecto ...
- hdu 4279 Number(G++提交)
打表找规律: #include<stdio.h> #include<math.h> #define N 250 bool judge(int i,int j) { ;k< ...
- YDNJS(上卷):this 的绑定对象
函数中的 this 是在调用时被绑定的,this 指向谁完全取决于函数的调用位置. 确定 this 的绑定对象的方式有 4 种. 默认绑定 默认绑定就是将函数中的 this 绑定给了全局对象 wind ...
- 手机APP兼容性测试
兼容性测试方案 兼容性问题 屏幕分辨率兼容性问题 软件(iOS和Android系统版本及不同厂家的定制ROM)兼容性问题 硬件(不同的CPU.内存大小等等)兼容性问题 网络(2G/3G/4G/WIFI ...