题目链接

NOIP2017真的是不按常理出牌:

1、数学题不在Day2T1

2、一道水题一道细节极多的模拟题一道不知道怎么形容的题(小凯的疑惑)(因为我太菜了)

3、3道大火题

当时看到列队这题是毫无头绪的,因为数据大得让你存都存不下,于是果断打了个30分暴力(如果打个离散化还能多骗20分)。

蓦然回首,豁然开朗。

思考可知,一个人出列影响的只是当前一行和最后一列,于是,我们只需要对每一行和最后一列分别用数据结构维护,这个数据结构要支持

1、查询并删除第\(k\)个数。

2、在末尾插入一个数。

若能维护这些,设每次操作的位置为\((x,y)\),那我们只需要把第\(x\)行第\(y\)个数删除并插入到最后一列的末尾去,然后把最后一列第\(x\)个数删除并插入到第\(x\)行的末尾就行了。

接下来考虑用什么数据结构。

\(Splay\)显然是支持这些操作的(事实上几乎所有平衡树都支持,然而我只会常数巨大的\(Splay\))

然后面临的一个问题就是\(n*m\)的范围达到了\((30W)^2\),显然直接开是开不下的。

容易发现\(q\)次操作后,绝大部分人的相对位置是不变的,所以我们可以用点表示区间,查询&删除\(k\)时把这个区间\([l,r]\)分成三部分,

·1、\([l,k-1]\)

·2、\(k\)

·3、\([k+1,r]\)

第一个区间就是原来的点,第三个区间是新加的点,第二个就是我们需要的,直接丢掉,把第一个和第三个点连起来(具体就是把第三部分插入到第一部分和第一部分的右儿子之间)。特别地,如果\(k\)刚好等于这个点维护的区间的两个端点之一,直接把端点维护的区间减一减掉\(k\)就行了。

\(100\)多\(line\)的\(code\),\(debug\)了好久唔唔唔。

#include <cstdio>
#include <cstdlib>
#define ll long long
#define getchar() (S==T&&(T=(S=BB)+fread(BB,1,1<<15,stdin),S==T)?EOF:*S++)
char BB[1<<15],*S=BB,*T=BB;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
return s * w;
}
const int MAXN = 300010;
const int MAX = 10000010;
int n, m, q;
int cnt, size[MAX], son[MAX][2], fa[MAX];
ll L[MAX], R[MAX];
struct Splay_Tree{
int root;
inline void pushup(int x){ size[x] = size[son[x][0]] + size[son[x][1]] + R[x] - L[x] + 1; }
inline int Newnode(ll l, ll r){
L[++cnt] = l; R[cnt] = r;size[cnt] = r - l + 1;
return cnt;
}
inline void init(ll l, ll r){ root = Newnode(l, r); }
inline void rotate(int x){
int y = fa[x]; int z = fa[y]; int k = (son[y][1] == x);
son[z][son[z][1] == y] = x; fa[x] = z;
son[y][k] = son[x][k ^ 1]; fa[son[x][k ^ 1]] = y;
son[x][k ^ 1] = y; fa[y] = x;
pushup(y); pushup(x);
}
inline void Splay(int x, int goal){
if(x == goal) return;
int y, z;
while(fa[x] != goal){
y = fa[x]; z = fa[y];
if(z != goal) (son[z][1] == y) ^ (son[y][1] == x) ? rotate(x) : rotate(y);
rotate(x);
}
if(!goal) root = x;
}
inline void insert(ll x){
int now = root;
while(son[now][1]) now = son[now][1];
int t = Newnode(x, x);
son[now][1] = t; fa[t] = now; Splay(t, 0);
}
inline ll split(int x, ll k){ //分裂点x,删除k
ll s = L[x], t = R[x];
if(k != s && k != t){
int b = Newnode(k + 1, t); R[x] = k - 1;
son[b][1] = son[x][1]; fa[son[x][1]] = b;
son[x][1] = b; fa[b] = x;
Splay(b, 0);
}
else{
if(k == t) --R[x];
else ++L[x];
--size[x];
Splay(x, 0);
}
return k;
}
inline ll popkth(int k){ //删除并返回第k大
int x = root;
while(233){
if(size[son[x][0]] >= k) x = son[x][0];
else {
k -= size[son[x][0]];
if(k <= R[x] - L[x] + 1)
return split(x, k + L[x] - 1);
k -= R[x] - L[x] + 1; x = son[x][1];
}
}
}
inline int build(int l, int r, int f){ //对最后一列的建树
if(l > r) return 0;
int mid = (l + r) >> 1;
int now = Newnode((ll)mid * m, (ll)mid * m);
fa[now] = f;
son[now][0] = build(l, mid - 1, now);
son[now][1] = build(mid + 1, r, now);
pushup(now);
return now;
}
}splay[MAXN];
int a, b;
ll x, y;
int main(){
n = read(); m = read(); q = read();
for(int i = 1; i <= n; ++i) //每行一棵Splay维护前m-1个数
splay[i].init((ll)(i - 1) * m + 1, (ll)i * m - 1); //点表示区间
splay[0].root = splay[0].build(1, n, 0);
for(int i = 1; i <= q; ++i){
a = read(); b = read();
if(b == m){
printf("%lld\n", x = splay[0].popkth(a));
splay[0].insert(x);
continue;
}
printf("%lld\n", x = splay[a].popkth(b));
splay[a].insert(splay[0].popkth(a));
splay[0].insert(x);
}
return 0;
}

[NOIP2017]列队 (Splay)的更多相关文章

  1. Luogu 3960 [NOIP2017] 列队 - splay|线段树

    题解 是我从来没有做过的裂点splay... 看的时候还是很懵逼的QAQ. 把最后一列的$n$个数放在一个平衡树中, 有 $n$ 个点 剩下的$n$行数, 每行都开一个平衡树,开始时每棵树中仅有$1$ ...

  2. 【loj2319】[NOIP2017]列队 Splay(卡过)

    题目描述 给出一个 $n\times m$ 的矩阵,第 $i$ 行第 $j$ 列的数为 $(i-1)\times m+j$ . 现在有 $q$ 次操作,每次操作给出位置 $(x,y)$ ,取出 $(x ...

  3. [NOIP2017]列队 离线+SBT

    [NOIP2017]列队 题目描述 Sylvia 是一个热爱学习的女♂孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有n×m名学生,方阵 ...

  4. 题解[NOIP2017] 列队

    题解[NOIP2017] 列队 题面 解析 看到这题时感觉这个编号很难维护啊? 后来看了lzf大佬的题解才会.. 首先,考虑一个稍微暴力的做法, 维护每一行的前\(m-1\)个人和最后一列的\(n\) ...

  5. 【NOIP2017】列队 splay

    当年太菜了啊,连$60$分的暴力都没拿满,只打了一个$30$分的. 考虑到这题最多只会询问到$30W$个点,且整个矩阵会去到$30W\times 30W$,显然不能将所有的点存下来. 对于每一行(除最 ...

  6. [NOIP2017]列队(线段树/裂点splay)

    考虑n=1的做法,就是支持: 1.在线删一个数 2.在结尾加一个数 3.查询序列的第y个数 用线段树记录区间内被删元素的个数,可以通过线段树上二分快速得解,对于新增的数,用vector记录即可. 对于 ...

  7. Luogu3960 NOIP2017列队(splay/线段树)

    令splay中的一个点表示一段区间,需要使用其中某个点时将区间分裂即可,剩下的都是splay的基本操作了.写的非常丑陋,注意细节.感觉考场上肯定只能靠部分分苟活了.想起来去年因为各种莫名其妙的原因50 ...

  8. NOIP2017列队(phalanx)解题报告

    列队作为NOIP2017最后一道题,其实并不难,只是相对于其它题目,有点小小的工业 首先,这道题我用splay维护的,如果你不会splay,又想学一下splay,可以来这里学一学,接下来步入正题 首先 ...

  9. NOIP2017 列队 题解报告【56行线段树】

    题目描述 Sylvia 是一个热爱学习的女♂孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有n \times mn×m名学生,方阵的行数 ...

随机推荐

  1. LeetCode题目解答

    LeetCode题目解答——Easy部分 Posted on 2014 年 11 月 3 日 by 四火 [Updated on 9/22/2017] 如今回头看来,里面很多做法都不是最佳的,有的从复 ...

  2. 部署:阿里云ECS部署Docker CE

    1 部署阿里云ECS,选择CentOS操作系统,并启动实例: 2 部署Docker CE: a.检查centos版本: $ cat /etc/redhat-release CentOS Linux r ...

  3. ant-design 实现一个登陆窗口

    前提:已经完成项目实战(https://ant.design/docs/react/practical-projects-cn#定义-Model) 如果要想实现一个登陆窗口,首先得有一个ui,想到的是 ...

  4. 【题解搬运】PAT_A1016 Phone Bills

    从我原来的博客上搬运.原先blog作废. 题目 A long-distance telephone company charges its customers by the following rul ...

  5. Qt 实现脉搏检测-1-心跳曲线部分

    最新的想法就是写一个显示脉搏的东西,主要就是通过串口读取硬件(检测心跳的)传来的数据,在显示一下. 先实现画心跳曲线 如下图 先来电干货, 首先,在这个代码中,第一次用到了list这个东东 所以,关于 ...

  6. Python 3基础教程30-sys模块

    本文介绍sys模块,简单打印两个重定向输出. 目前使用机会没有,以后实际用到了,再去研究和学习.

  7. Wannafly挑战赛21:C - 大水题

    链接:Wannafly挑战赛21:C - 大水题 题意: 现在给你N个正整数ai,每个数给出一“好数程度” gi(数值相同但位置不同的数之间可能有不同的好数程度).对于在 i 位置的数,如果有一在j位 ...

  8. POJ 1144 Network(割点)

    Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are c ...

  9. POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

  10. SourceTree git的管理工具使用教程1

    1SourceTree是一个window系统下的Git管理工具 2设置Git 工具——选项——Git设置 3拷贝远程的项目 新建/克隆(输入远程项目的url地址) 4验证(填写用户信息) 工具——选项 ...