HDU 1402 A * B Problem Plus (FFT求高精度乘法)
A * B Problem Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9413 Accepted Submission(s): 1468
Note: the length of each integer will not exceed 50000.
2
1000
2
2000
神奇的FFT。
如果是乘法,位数为n和位数为m的相乘,需要n*m次的乘法运算。
FFT在数字信号处理学过,但是第一次用来做这类题目,神奇啊。
乘法其实就是做线性卷积。
用DFT得方法可以求循环卷积,但是当循环卷积长度L≥N+M-1,就可以做线性卷积了。
使用FFT将两个数列转换成傅里叶域,在这的乘积就是时域的卷积。
给几个学习的链接吧:
http://wenku.baidu.com/view/8bfb0bd476a20029bd642d85.html (这主要看那个FFT的流程图)
http://wlsyzx.yzu.edu.cn/kcwz/szxhcl/kechenneirong/jiaoan/jiaoan3.htm 这有DFT的原理。
整理了个模板,感觉很赞!
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std; const double PI = acos(-1.0);
//复数结构体
struct complex
{
double r,i;
complex(double _r = 0.0,double _i = 0.0)
{
r = _r; i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
/*
* 进行FFT和IFFT前的反转变换。
* 位置i和 (i二进制反转后位置)互换
* len必须去2的幂
*/
void change(complex y[],int len)
{
int i,j,k;
for(i = , j = len/;i < len-; i++)
{
if(i < j)swap(y[i],y[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len/;
while( j >= k)
{
j -= k;
k /= ;
}
if(j < k) j += k;
}
}
/*
* 做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
*/
void fft(complex y[],int len,int on)
{
change(y,len);
for(int h = ; h <= len; h <<= )
{
complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ;j < len;j+=h)
{
complex w(,);
for(int k = j;k < j+h/;k++)
{
complex u = y[k];
complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -)
for(int i = ;i < len;i++)
y[i].r /= len;
}
const int MAXN = ;
complex x1[MAXN],x2[MAXN];
char str1[MAXN/],str2[MAXN/];
int sum[MAXN];
int main()
{
while(scanf("%s%s",str1,str2)==)
{
int len1 = strlen(str1);
int len2 = strlen(str2);
int len = ;
while(len < len1* || len < len2*)len<<=;
for(int i = ;i < len1;i++)
x1[i] = complex(str1[len1--i]-'',);
for(int i = len1;i < len;i++)
x1[i] = complex(,);
for(int i = ;i < len2;i++)
x2[i] = complex(str2[len2--i]-'',);
for(int i = len2;i < len;i++)
x2[i] = complex(,);
//求DFT
fft(x1,len,);
fft(x2,len,);
for(int i = ;i < len;i++)
x1[i] = x1[i]*x2[i];
fft(x1,len,-);
for(int i = ;i < len;i++)
sum[i] = (int)(x1[i].r+0.5);
for(int i = ;i < len;i++)
{
sum[i+]+=sum[i]/;
sum[i]%=;
}
len = len1+len2-;
while(sum[len] <= && len > )len--;
for(int i = len;i >= ;i--)
printf("%c",sum[i]+'');
printf("\n");
}
return ;
}
HDU 1402 A * B Problem Plus (FFT求高精度乘法)的更多相关文章
- HDU - 1402 A * B Problem Plus (FFT实现高精度乘法)
题意:计算A*B,A,B均为长度小于50000的整数. 这是FFT在大整数相乘中的一个应用,我本来想用NTT做的,但NTT由于取模很可能取炸,所以base必须设得很小,而且效率也比不上FFT. A和B ...
- hdu 1402 A * B Problem Plus FFT
/* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...
- HDU - 1402 A * B Problem Plus FFT裸题
http://acm.hdu.edu.cn/showproblem.php?pid=1402 题意: 求$a*b$ 但是$a$和$b$的范围可以达到 $1e50000$ 题解: 显然...用字符串模拟 ...
- HDU 1402 A * B Problem Plus (FFT模板题)
FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> ...
- SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法
SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL 这是一道FFT求高精度的模板题. 参考:https://www.cnblogs.com/Rabbi ...
- P1919 FFT加速高精度乘法
P1919 FFT加速高精度乘法 传送门:https://www.luogu.org/problemnew/show/P1919 题意: 给出两个n位10进制整数x和y,你需要计算x*y. 题解: 对 ...
- HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式
http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/artic ...
- FFT实现高精度乘法
你应该知道$FFT$是用来处理多项式乘法的吧. 那么高精度乘法和多项式乘法有什么关系呢? 观察这样一个$20$位高精度整数$11111111111111111111$ 我们可以把它处理成这样的形式:$ ...
- BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
随机推荐
- js密码的匹配正则
匹配的密码是 数字大写或者小写的字母.符号. if(pwd.match(/[\d]/) && pwd.match(/[A-Za-z]/) && pwd.match(/[ ...
- 转:A Painless Q-learning Tutorial (一个 Q-learning 算法的简明教程)
demo 参见 MDP DEMO 本文是对 http://mnemstudio.org/path-finding-q-learning-tutorial.htm 的翻译,共分两部分,第一部分为中文 ...
- Nginx的client_header_buffer_size和large_client_header_buffers学习
之前看到有人写的一篇关于nginx配置中large_client_header_buffers的问题排查的文章,其中提到: large_client_header_buffers 虽然也可以在serv ...
- 亮相SIGGRAPH 太极拳三维教学App制作揭秘
http://news.hxsd.com/CG-animation/201208/663303.html 编者按:<My Tai Chi>是一系列基于移动平台的三维互动产品,由北京七星汇工 ...
- tmux下vim颜色不正常问题
在解决了tmux下,make menuconfig颜色不正常问题https://www.cnblogs.com/zqb-all/p/9702582.html后,引入了新的问题,vim颜色错乱. 尝试了 ...
- module加载过程初步分析[更新中]【转】
转自:http://blog.chinaunix.net/uid-1817735-id-2837068.html 分析这个过程可以有助于我们认识在加载模块时出现的问题大抵在哪里了. 直接从sys_in ...
- platform_driver_register,什么时候调用PROBE函数 注册后如何找到驱动匹配的设备【转】
转自:http://blog.chinaunix.net/uid-25508271-id-2979412.html kernel_init中do_basic_setup()->driver_in ...
- 【洛谷P3709】大爷的字符串题
看这题网上居然还没人写blog,怕是都去看洛谷自带的了-- 你才是字符串!你全家都是字符串!这题跟字符串没多大关系,只是出题人lxl想要吐槽某中学而已--... 其实这题说白了就是问区间里出现最多的数 ...
- 【洛谷】xht模拟赛 题解
前言 大家期待已久并没有的题解终于来啦~ 这次的T1和HAOI2016撞题了...深表歉意...表示自己真的不知情... 天下的水题总是水得相似,神题各有各的神法.--<安娜·卡列妮娜> ...
- ApplicationCommands 应用程序常见命令
ApplicationCommands用于表示应用程序程序员经常遇到的常见命令,类似于ctrl+c 在WPF中,许多控件都自动集成了固有的命令集.比如文本框TextBox就提供了复制(Copy),粘贴 ...