HDU 1402 A * B Problem Plus (FFT求高精度乘法)
A * B Problem Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9413 Accepted Submission(s): 1468
Note: the length of each integer will not exceed 50000.
2
1000
2
2000
神奇的FFT。
如果是乘法,位数为n和位数为m的相乘,需要n*m次的乘法运算。
FFT在数字信号处理学过,但是第一次用来做这类题目,神奇啊。
乘法其实就是做线性卷积。
用DFT得方法可以求循环卷积,但是当循环卷积长度L≥N+M-1,就可以做线性卷积了。
使用FFT将两个数列转换成傅里叶域,在这的乘积就是时域的卷积。
给几个学习的链接吧:
http://wenku.baidu.com/view/8bfb0bd476a20029bd642d85.html (这主要看那个FFT的流程图)
http://wlsyzx.yzu.edu.cn/kcwz/szxhcl/kechenneirong/jiaoan/jiaoan3.htm 这有DFT的原理。
整理了个模板,感觉很赞!
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std; const double PI = acos(-1.0);
//复数结构体
struct complex
{
double r,i;
complex(double _r = 0.0,double _i = 0.0)
{
r = _r; i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
/*
* 进行FFT和IFFT前的反转变换。
* 位置i和 (i二进制反转后位置)互换
* len必须去2的幂
*/
void change(complex y[],int len)
{
int i,j,k;
for(i = , j = len/;i < len-; i++)
{
if(i < j)swap(y[i],y[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len/;
while( j >= k)
{
j -= k;
k /= ;
}
if(j < k) j += k;
}
}
/*
* 做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
*/
void fft(complex y[],int len,int on)
{
change(y,len);
for(int h = ; h <= len; h <<= )
{
complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ;j < len;j+=h)
{
complex w(,);
for(int k = j;k < j+h/;k++)
{
complex u = y[k];
complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -)
for(int i = ;i < len;i++)
y[i].r /= len;
}
const int MAXN = ;
complex x1[MAXN],x2[MAXN];
char str1[MAXN/],str2[MAXN/];
int sum[MAXN];
int main()
{
while(scanf("%s%s",str1,str2)==)
{
int len1 = strlen(str1);
int len2 = strlen(str2);
int len = ;
while(len < len1* || len < len2*)len<<=;
for(int i = ;i < len1;i++)
x1[i] = complex(str1[len1--i]-'',);
for(int i = len1;i < len;i++)
x1[i] = complex(,);
for(int i = ;i < len2;i++)
x2[i] = complex(str2[len2--i]-'',);
for(int i = len2;i < len;i++)
x2[i] = complex(,);
//求DFT
fft(x1,len,);
fft(x2,len,);
for(int i = ;i < len;i++)
x1[i] = x1[i]*x2[i];
fft(x1,len,-);
for(int i = ;i < len;i++)
sum[i] = (int)(x1[i].r+0.5);
for(int i = ;i < len;i++)
{
sum[i+]+=sum[i]/;
sum[i]%=;
}
len = len1+len2-;
while(sum[len] <= && len > )len--;
for(int i = len;i >= ;i--)
printf("%c",sum[i]+'');
printf("\n");
}
return ;
}
HDU 1402 A * B Problem Plus (FFT求高精度乘法)的更多相关文章
- HDU - 1402 A * B Problem Plus (FFT实现高精度乘法)
题意:计算A*B,A,B均为长度小于50000的整数. 这是FFT在大整数相乘中的一个应用,我本来想用NTT做的,但NTT由于取模很可能取炸,所以base必须设得很小,而且效率也比不上FFT. A和B ...
- hdu 1402 A * B Problem Plus FFT
/* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...
- HDU - 1402 A * B Problem Plus FFT裸题
http://acm.hdu.edu.cn/showproblem.php?pid=1402 题意: 求$a*b$ 但是$a$和$b$的范围可以达到 $1e50000$ 题解: 显然...用字符串模拟 ...
- HDU 1402 A * B Problem Plus (FFT模板题)
FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> ...
- SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法
SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL 这是一道FFT求高精度的模板题. 参考:https://www.cnblogs.com/Rabbi ...
- P1919 FFT加速高精度乘法
P1919 FFT加速高精度乘法 传送门:https://www.luogu.org/problemnew/show/P1919 题意: 给出两个n位10进制整数x和y,你需要计算x*y. 题解: 对 ...
- HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式
http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/artic ...
- FFT实现高精度乘法
你应该知道$FFT$是用来处理多项式乘法的吧. 那么高精度乘法和多项式乘法有什么关系呢? 观察这样一个$20$位高精度整数$11111111111111111111$ 我们可以把它处理成这样的形式:$ ...
- BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
随机推荐
- js获取当前url地址参数中文乱码问题
网上看了一些关于此问题的文章,都说的不清不楚,有些更是乱七八糟,完全没法看,故此找了一篇能用的,借鉴作为笔记. //首先获取到当前页面的地址栏信息 var url = window.location. ...
- Activiti工作流引擎核心介绍
引言 Activiti 作为一个遵从 Apache 许可的工作流和业务流程管理开源平台,其核心是基于 Java 的超快速.超稳定的 BPMN 2.0 流程引擎,强调流程服务的可嵌入性和可扩展性,同时更 ...
- [ZOJ2341]Reactor Cooling解题报告|带上下界的网络流|无源汇的可行流
Reactor Cooling The terrorist group leaded by a well known international terrorist Ben Bladen is bul ...
- 02-更改窗口的根控制器
Demo示例程序源代码
源代码下载链接:02-更改窗口的根控制器.zip18.0 KB // MJAppDelegate.h // // MJAppDelegate.h // 02-更改窗口的根控制器 // // ...
- 01-UIDynamic简单演练demo源代码
源代码下载: 01-简单演练.zip72.0 KB // // ViewController.m // 01.简单演练 // // Created by apple on 13-12-24. / ...
- bzoj 1076 状压DP
我们设w[i][s]为当前到第i关,手中的物品为s的时候,期望得分为多少,其中s为二进制表示每种物品是否存在. 那么就比较容易转移了w[i][s]=(w[i-1][s']+v[j]) *(1/k),其 ...
- python读取doc
import os, time, fnmatch from docx import Document class search: def __init__(self, path, search_str ...
- Oracle expdp
exp 客户端工具expdp 服务端工具 expdp help=y 帮助命令directory 导出目录逻辑名 --查询默认数据 ...
- vim操作大全
# 转自 https://blog.csdn.net/weixin_37657720/article/details/80645991 曾经使用了两年多的Vim,手册也翻过一遍.虽然现在不怎么用vim ...
- 【python】python2.x 与 python3.x区别对照+缩进错误解决方法
仅仅列出我用到的,不全. 划重点: 1. urllib2 用 urllib.request 代替 2. urllib.urlencode 用 urllib.parse.urlencode 代替 3. ...