题目描述

给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3),使得Ap1,Ap2,Ap3,…ApLen是一个等差序列。

输入

输入的第一行包含一个整数T,表示组数。
下接T组数据,每组第一行一个整数N,每组第二行为一个1到N的排列,数字两两之间用空格隔开。
N<=10000,T<=7

输出

对于每组数据,如果存在一个等差子序列,则输出一行“Y”,否则输出一行“N”。

样例输入

2
3
1 3 2
3
3 2 1

样例输出

N
Y


题解

STL-bitset

首先选出的长度一定为3(长度多了没有意义,只取前3项即可)。

然后枚举中间位置的数,转化为是否存在$i+k=2j$,其中$i$在$j$之前出现,$k$在$j$之后出现。

考虑暴力怎么求:对于前面和后面各开一个桶,暴力枚举。

由于给出的是一个全排列,因此每个数只出现1次,相当于开的桶是bool类型的。我们可以使用bitset优化。至于如何判断是否存在两个数的和为定值,可以维护$20000-i$和$k$,如果存在$i+k=2j$,那么$(20000-i)=k+(20000-2j)$。所以维护左边的$20000-i$和右边的$k$,如果把右面左移$20000-2j$后与$20000-i$的与不为0则存在。

时间复杂度$O(\frac{Tn^2}{16})$,分母不是32是因为bitset的范围需要开到2W。

貌似正解是分段哈希。

#include <cstdio>
#include <bitset>
using namespace std;
int v[10010];
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
bitset<20010> b , c;
int n , i;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &v[i]) , c[v[i]] = 1;
for(i = 1 ; i <= n ; i ++ )
{
c[v[i]] = 0;
if(((b >> (20000 - (v[i] << 1))) & c).any())
{
puts("Y");
break;
}
b[20000 - v[i]] = 1;
}
if(i > n) puts("N");
}
return 0;
}

【bzoj2124】等差子序列 STL-bitset的更多相关文章

  1. [BZOJ2124]等差子序列/[CF452F]Permutation

    [BZOJ2124]等差子序列/[CF452F]Permutation 题目大意: 一个\(1\sim n\)的排列\(A_{1\sim n}\),询问是否存在\(i,j(i<j)\),使得\( ...

  2. bzoj2124: 等差子序列线段树+hash

    bzoj2124: 等差子序列线段树+hash 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2124 思路 找大于3的等差数列其实就是找等于 ...

  3. BZOJ2124: 等差子序列(树状数组&hash -> bitset 求是否存在长度为3的等差数列)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 2354  Solved: 826[Submit][Status][Discuss ...

  4. BZOJ2124 等差子序列(树状数组+哈希)

    容易想到一种暴力的做法:枚举中间的位置,设该位置权值为x,如果其两边存在权值关于x对称即合法. 问题是如何快速寻找这个东西是否存在.考虑仅将该位置左边出现的权值标1.那么若在值域上若关于x对称的两权值 ...

  5. [bzoj2124]等差子序列_线段树_hash

    等差子序列 bzoj-2124 题目大意:给定一个1~n的排列,问是否存在3个及以上的位置上的数构成连续的等差子序列. 注释:$1\le n\le 10^4$. 想法:这题就相当于是否存在3个数i,j ...

  6. [bzoj2124]等差子序列(hash+树状数组)

    我又来更博啦     2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 941  Solved: 348[Submit][Statu ...

  7. bzoj2124 等差子序列(hash+线段树)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 719  Solved: 261[Submit][Status][Discuss] ...

  8. BZOJ2124:等差子序列(线段树,hash)

    Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得A ...

  9. BZOJ2124: 等差子序列

    题意:给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap ...

  10. [bzoj2124]等差子序列——线段树+字符串哈希

    题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...

随机推荐

  1. 爬虫——Handler处理器 和 自定义Opener

    我们之前一直都在使用的urlopen,这是一个特殊的opener(也就是模块帮我们构建好的). 但是基本的urlopen()方法不支持代理.cookie等其他的HTTP/HTTPS高级功能.所以要支持 ...

  2. git stash应用

    今天在看一个bug,之前一个分支的版本是正常的,在新的分支上上加了很多日志没找到原因,希望回溯到之前的版本,确定下从哪个提交引入的问题,但是还不想把现在的修改提交,也不希望在Git上看到当前修改的版本 ...

  3. JS日期去杠,日期转换String转Date

    1.巧妙使用split()和join()替换字符串var str = '2014-05-05';var newstr = str.split('-').join("");split ...

  4. Linux中程序的编译和链接过程

    1.从源码到可执行程序的步骤:预编译.编译.链接.strip 预编译:预编译器执行.譬如C中的宏定义就是由预编译器处理,注释等也是由预编译器处理的. 编译: 编译器来执行.把源码.c .S编程机器码. ...

  5. Python3 os模块&sys模块&hashlib模块

    ''' os模块 非常重要的模块 ''' import os # print(os.getcwd()) # 获取当前工作目录 # os.chdir(r'路径名') # 改变当前工作目录 # print ...

  6. 修改mysql root密码的方法

    方法1: 用SET PASSWORD命令 首先登录MySQL. 格式:mysql> set password for 用户名@localhost = password('新密码'); 例子:my ...

  7. C#中利用iTextSharp开发二维码防伪标签(1)

    开发的基本说明与尝试 一个亲戚朋友是做防伪码印刷的,之前的电话防伪.短信防伪都用Delphi给他设计,使用也挺不错,后来又加了一个基于asp的网页版防伪查询.由于业务需求,今年年初朋友又提成希望能够完 ...

  8. ArrayMap java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Object[]

    错误堆栈: java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Object[] at android ...

  9. 用Kettle的一套流程完成对整个数据库迁移 费元星

    原地址 :http://ainidehsj.iteye.com/blog/1735434 需求: 1.你是否遇到了需要将mysql数据库中的所有表与数据迁移到Oracle. 2.你是否还在使用kett ...

  10. 关于 SSH Server 的整体设定

    # . 关于 SSH Server 的整体设定,包含使用的 port 啦,以及使用的密码演算方式 Port # SSH 预设使用 这个 port,您也可以使用多的 port ! # 亦即重复使用 po ...