题目链接

咕咕咕

思路

如果是\(q=0\)的话,相当于维护一个集合,支持查询最大值,删除最大值,添加新值,用\(set\)即可实现

如果是\(q>0\)的话,我们可以把用刀切看成是,把最大值\(x\),分成\(\left\lfloor px\right\rfloor-q\)和\(x-\left\lfloor px\right\rfloor-q\),然后给把整个集合都加上\(q\),所以我们可以维护一个变量\(ans\)表示整个集合的偏移量,集合中的数加上\(ans\)就是真实值开始我们让\(ans=0\)

对于每一秒:

1.取出集合中的最大值x,令\(x=x+ans\)

2.把\(\left\lfloor px\right\rfloor-q\)和\(x-\left\lfloor px\right\rfloor-q\)插入集合

3.令\(ans+=q\)

用三个队列\(q1,q2,q3\)共同组成要维护的集合,\(q1\)保存初始的\(n\)个数,从大到小排序。\(q2\)存储 \(\left\lfloor px\right\rfloor\)

,\(q3\)存储 \(x-\left\lfloor px\right\rfloor\) ,每个时刻最大的数就是\(q1,q2,q3\)队首之一。

我们来证明一下集合中取出的数是单调递减的,而且新生成的数也是单调递减的

因为\(p,q\)是常数,\(0<p<1\)而且\(p\)是非负整数,设\(x_1,x_2\)是非负整数

当\(x_1>=x_2\)时,\(\left\lfloor px_1\right\rfloor+q=\left\lfloor px_1+pq\right\rfloor>=\left\lfloor px_2+pq\right\rfloor=\left\lfloor p(x_2+q)\right\rfloor\)

又因为\(x_1>x_2>=p(x_1-x_2)\)

所以\(x_1-px_1>=x_2-px_2>=x_2-p(x_2+q)\)

所以\(x_1-\left\lfloor px_1\right\rfloor+q=\left\lfloor x_1-px_1\right\rfloor+q>=\left\lfloor x_2-p(x_2+q)\right\rfloor+q>=x_2+q-\left\lfloor p(x_2+q)\right\rfloor\)

即:

若\(x_1\)在\(x_2\)之前被取出集合,那么一秒之后\(x_1\)被分成\(\left\lfloor px\right\rfloor-q\)和\(x-\left\lfloor px\right\rfloor-q\)分别不小于x_2+q分成的两个数

\(\left\lfloor x_2-p(x_2+q)\right\rfloor+q\)和\(x_2+q-\left\lfloor p(x_2+q)\right\rfloor\)

证毕(写死我了)

代码

#include<bits/stdc++.h>
#include<queue>
#define int long long int
#define p u/v
using namespace std;
int n,m,q,u,v,t,a[7004015];
int cmp(int x,int y) {
return x>y;
}
queue<int>q1,q2,q3;
int calc(int t) {
int x=0,a=0,b=0,c=0;
if(!q1.empty()) a=q1.front()+t*q;
if(!q2.empty()) b=q2.front()+t*q;
if(!q3.empty()) c=q3.front()+t*q;
x=max(a,max(b,c));
if(x==a) q1.pop();
else if(x==b) q2.pop();
else if(x==c) q3.pop();
return x;
}
signed main() {
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
cin>>n>>m>>q>>u>>v>>t;
//n只蚯蚓 m秒 p=u/v t是输出参数
for(int i=1; i<=n; ++i) cin>>a[i];
sort(a+1,a+1+n,cmp);
for(int i=1; i<=n; ++i) q1.push(a[i]);
for(int i=1; i<=m; ++i) {
int x=calc(i-1);
if(!(i%t)) cout<<x<<' ';
int now1=x*p;//注意这里要先乘后除
int now2=x-now1;
q2.push(now1-i*q);
q3.push(now2-i*q);
}
cout<<endl;
for(int i=1; i<=(n+m); ++i) {
int x=calc(m);
if(!(i%t)) cout<<x<<' ';
}
return 0;
}

P2827 蚯蚓的更多相关文章

  1. 洛谷P2827 蚯蚓 题解

    洛谷P2827 蚯蚓 题解 题目描述 本题中,我们将用符号 ⌊c⌋ 表示对 c 向下取整. 蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓. 蛐蛐国里现 ...

  2. 【BZOJ】4721: [Noip2016]蚯蚓 / 【洛谷】P2827 蚯蚓(单调队列)

    Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮 ...

  3. 洛谷 P2827 蚯蚓 解题报告

    P2827 蚯蚓 题目描述 本题中,我们将用符号 \(\lfloor c \rfloor\) 表示对 \(c\) 向下取整,例如:\(\lfloor 3.0 \rfloor = \lfloor 3.1 ...

  4. 洛谷——P2827 蚯蚓

    P2827 蚯蚓 题目描述 本题中,我们将用符号 \lfloor c \rfloor⌊c⌋ 表示对 cc 向下取整,例如:\lfloor 3.0 \rfloor = \lfloor 3.1 \rflo ...

  5. Luogu P2827 蚯蚓(模拟)

    P2827 蚯蚓 题意 题目描述 本题中,我们将用符号\(\lfloor c\rfloor\)表示对\(c\)向下取整,例如:\(\lfloor 3.0\rfloor =\lfloor 3.1\rfl ...

  6. [Luogu P2827] 蚯蚓 (巧妙的模拟)

    题面: 传送门:https://www.luogu.org/problemnew/show/P2827 Solution 看到这题,我们肯定会有一个大胆想法. 那就是直接用堆模拟这个过程. 对于q,我 ...

  7. 洛谷P2827 蚯蚓——思路题

    题目:https://www.luogu.org/problemnew/show/P2827 思路... 用优先队列模拟做的话,时间主要消耗在每次的排序上: 能不能不要每次排序呢? 关注先后被砍的两条 ...

  8. Luogu P2827 蚯蚓

    看到题目就可以想到直接开的堆模拟的过程了吧,这个还是很naive的 注意在用堆做的时候也是要明智一点的,对于蚯蚓长度的相加肯定不能直接遍历并加上,还是可以差分一下的 其实说白了就是把集体加->单 ...

  9. 【luogu P2827 蚯蚓】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2827 35分:暴力sortO(mnlogn). 80分:考虑到每次不好维护不被切的点+q,正难则反.改成维护 ...

  10. 洛谷 P2827 蚯蚓

    题目描述 本题中,我们将用符号\lfloor c \rfloor⌊c⌋表示对c向下取整,例如:\lfloor 3.0 \rfloor= \lfloor 3.1 \rfloor=\lfloor 3.9 ...

随机推荐

  1. MYSQL思维导图(转载)

    图片来源:https://www.cnblogs.com/mutudou/p/11858477.html

  2. unity资源机制(转)

    原文地址:https://www.jianshu.com/p/ca5cb9d910c0作者:重装机霸 2.资源概述 Unity必须通过导入将所支持的资源序列化,生成AssetComponents后,才 ...

  3. golang --os系统包详解

    环境变量 Environ 获取所有环境变量, 返回变量列表 func Environ() []string package main import ( "fmt" "os ...

  4. 《 .NET并发编程实战》阅读指南 - 第9章

    先发表生成URL以印在书里面.等书籍正式出版销售后会公开内容.

  5. 【java】Java多线程总结之线程安全队列Queue【转载】

    原文地址:https://www.cnblogs.com/java-jun-world2099/articles/10165949.html ============================= ...

  6. 2019-11-29-win10-UWP-Controls-by-function

    原文:2019-11-29-win10-UWP-Controls-by-function title author date CreateTime categories win10 UWP Contr ...

  7. [转].NET Core前后端分离快速开发框架(Core.3.0+AntdVue)

    [转].NET Core前后端分离快速开发框架(Core.3.0+AntdVue) 目录 引言 简介 环境搭建 开发环境要求 基础数据库构建 数据库设计规范 运行 使用教程 全局配置 快速开发 管理员 ...

  8. HTML Web Workers

    Web worker 是运行在后台的 JavaScript,不会影响页面的性能. 什么是 Web Worker? 当在 HTML 页面中执行脚本时,页面是不可响应的,直到脚本已完成. Web work ...

  9. Java程序员的魔法杖-Arthas 3.1.2版本发布了

    Arthas已经成为我日常运维.线上排查的必备之品,听说最近更新版本了,今天这篇文章看下又增加了什么新的能力. Arthas是Alibaba开源的Java诊断工具,深受开发者喜爱. Github:ht ...

  10. Mysql数据库 深度知识点

    停止命令:net stop mysql 启动命令:net start mysql   mysql登录命令 mysql -h ip -P 端口 -u 用户名 -p   mysql --version 或 ...