【JZOJ6225】【20190618】计数
题目
对于一个01串,定义\(f(s)\)为\(f(s) = \sum_{i=0}^{\lfloor \frac{|s|}{2} \rfloor -1 }[s_i=s_{|s|-1-i}]\)
定义\(S\)所有子串集合为\(P(S)\) ,求\(\sum_{s \in P(S)} f(s)\)
\(|S| \le 250000\)
题解
这题我看看到数据范围感到莫名奇怪却不知道奇怪在哪里?
60 pts
设\(f_{i}\)表示\(i\)位置开头的子序列的贡献,考虑增量
每次增量一个$ s_n $即对所有的 $ i \lt n $ 执行 $ f_i = \sum_{j=i}^{n-1} f_j + 2^{n-i-1}[s_i==s_j] $
相当于把所有位置做后缀和再在和$ s_n $相同的位置加上一个什么东西。。。
后缀和好像没法优化,那似乎如果我们直接出一个维护每次后缀和再考虑这种奇怪的加一个东西,
就可以转化成下面的100分做法来做了,可能装饰一下会是个不错的题?
100 pts
- \[\begin{align}
ans &= \sum_{i=0}^{n-1}\sum_{j\gt i}^{n-1} [s_i=s_j]2^{j-i-1}\sum_{k=0}^{min(i-1,n-1-j)}(^{i-1}_{k})(^{n-1-j}_k)\\
由于&\sum_{k=0} (^i_k)(^j_k) = \sum_{k=0} (^i_k)(^j_{j-k}) = (^{i+j}_j) \\
ans &= \sum_{i=0}^{n-1}\sum_{j\gt i}^{n-1} [s_i=s_j]2^{j-i-1}(^{n+i-j-2}_{i-1}) \\
&考虑01串并记reverse(s)=t,组合数拆开m,做两遍下面的东西\\
&= \sum_{k=0}^{n-2} 2^k(n-2-k)! \sum_{i=0}^{n-2-k} \frac{s_i}{i!} \times \frac{t_{n-2-k-i}}{(n-2-k-i)!} \\
&直接卷就可以了\\
\end{align}
\]- 之后我知道哪里奇怪了,FFT的话大致要四倍的数组,而2.5e5*4=1e6,十分惊人的暗示!
#include<bits/stdc++.h>
#define mod 998244353 using namespace std; const int N=1000010,G=3;
int n,a[N],b[N],c[N],ny[N],fac[N],inv[N],L,len,rev[N],pw2[N],iv;
char s[N]; void inc(int&x,int y){x+=y;if(x>=mod)x-=mod;}
int pw(int x,int y){
int re=1;if(y<0)y+=mod-1;
while(y){
if(y&1)re=1ll*re*x%mod;
y>>=1;x=1ll*x*x%mod;
}return re;
} void ntt(int*A,int f){
for(int i=0;i<len;++i)if(i<rev[i])swap(A[i],A[rev[i]]);
for(int i=1;i<len;i<<=1){
int wn=pw(G,f*(mod-1)/2/i);
for(int j=0;j<len;j+=(i<<1)){
int w=1;
for(int k=0;k<i;++k,w=1ll*w*wn%mod){
int x=A[j+k],y=1ll*w*A[j+k+i]%mod;
A[j+k]=(x+y)%mod;A[j+k+i]=(x-y+mod)%mod;
}
}
}
if(!~f)for(int i=0;i<len;++i)A[i]=1ll*iv*A[i]%mod;
} void calc(){
ntt(a,1);ntt(b,1);
for(int i=0;i<len;++i)a[i]=1ll*a[i]*b[i]%mod;
ntt(a,-1);
for(int i=0;i<len;++i){inc(c[i],a[i]);a[i]=b[i]=0;}
} int main(){
freopen("count.in","r",stdin);
freopen("count.out","w",stdout);
scanf("%s",s);n=strlen(s);
ny[1]=pw2[0]=1;
for(int i=pw2[1]=2;i<=n;++i){
ny[i]=1ll*(mod-mod/i)*ny[mod%i]%mod;
pw2[i]=(pw2[i-1]<<1)%mod;
}
for(int i=fac[0]=inv[0]=1;i<=n;++i){
fac[i]=1ll*fac[i-1]*i%mod;
inv[i]=1ll*inv[i-1]*ny[i]%mod;
}
for(int i=0;i<n;++i){
a[i]=s[i]=='1'?inv[i]:0;
b[i]=s[n-1-i]=='1'?inv[i]:0;
}
for(len=1;len<(n<<1);len<<=1,++L);
for(int i=0;i<len;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
iv=pw(len,mod-2);
calc();
for(int i=0;i<n;++i){
a[i]=s[i]=='0'?inv[i]:0;
b[i]=s[n-1-i]=='0'?inv[i]:0;
}
calc();
int ans=0;
for(int i=0;i<=n-2;++i)inc(ans,1ll*pw2[i]*fac[n-2-i]%mod*c[n-2-i]%mod);
cout<<ans<<endl;
return 0;
}
【JZOJ6225】【20190618】计数的更多相关文章
- 计数排序(counting-sort)——算法导论(9)
1. 比较排序算法的下界 (1) 比较排序 到目前为止,我们已经介绍了几种能在O(nlgn)时间内排序n个数的算法:归并排序和堆排序达到了最坏情况下的上界:快速排序在平均情况下达到该上界. ...
- Objective-C内存管理之引用计数
初学者在学习Objective-c的时候,很容易在内存管理这一部分陷入混乱状态,很大一部分原因是没有弄清楚引用计数的原理,搞不明白对象的引用数量,这样就当然无法彻底释放对象的内存了,苹果官方文档在内存 ...
- 最小生成树计数 bzoj 1016
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...
- swift学习笔记5——其它部分(自动引用计数、错误处理、泛型...)
之前学习swift时的个人笔记,根据github:the-swift-programming-language-in-chinese学习.总结,将重要的内容提取,加以理解后整理为学习笔记,方便以后查询 ...
- [LeetCode] Count and Say 计数和读法
The count-and-say sequence is the sequence of integers beginning as follows:1, 11, 21, 1211, 111221, ...
- C++ 引用计数技术及智能指针的简单实现
一直以来都对智能指针一知半解,看C++Primer中也讲的不够清晰明白(大概是我功力不够吧).最近花了点时间认真看了智能指针,特地来写这篇文章. 1.智能指针是什么 简单来说,智能指针是一个类,它对普 ...
- css-列表或标题的多级计数
利用css实现多级计数,比如1/1.1/1.1.1这种层层嵌套的计数,主要利用到counter-reset/counter-increment/counter/content/:before. 一.标 ...
- csv 中 数值被自动转换成科学计数法 的问题 excel打开后数字用科学计数法显示且低位变0的解决方法
保存在csv中的 013812345678,前面的0会被去掉,后面是科学计数法显示.保存成 col1,="013812345678" 即可. 注意,分隔符逗号后面直接接“=”等号. ...
- 用uniq来处理文件重复数据--交集,差集,计数等(转)
经常有这样的需求:两个文本文件要求取重复的行或只取不重复的,简单的情况下用sort和uniq来处理是非常方便的: 利用现存两个文件,生成一个新的文件 取出两个文件的并集(重复的行只保留一份) 取出两个 ...
随机推荐
- Linux RedHat7.0_64位系统中安装Oracle_11g_R2
步骤一: 当然是安装rhel7操作系统啦(废话),建议在安装过程中系统软件类型选择最后一项[Server with GUI].其他的默认一般即可. 步骤二:在初装完成的系统中无法像Windows那样直 ...
- C# vb .net实现大小调整特效滤镜
在.net中,如何简单快捷地实现Photoshop滤镜组中的大小调整效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第 ...
- MVC通过ViewBag动态生成Html输出到View
今天再给自己总结一下,关于ViewBag赋值Html格式值,但是在web页显示不正常; 例如,ViewBag.Content = "<p>你好,我现在测试一个东西.</p& ...
- 2019 光环新网科技java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.光环新网科技等公司offer,岗位是Java后端开发,因为发展原因最终选择去了光环新网科技,入职一年时间了,也 ...
- 英伟达 cuda 开发套件下载
下载地址 https://developer.nvidia.com/cuda-toolkit 安装比较简单,就不多说了.
- 【开发笔记】- MySQL EXPLAIN用法和结果的含义
转自:http://blog.chinaunix.net/uid-540802-id-3419311.html explain显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择 ...
- 小div在大div中垂直居中方式
代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...
- linux搭建stm32开发环境
下载stm32固件库 创建目录 libs目录放stm32固件库,src放用户源码,inc放用户头文件 # mkdir libs src inc 复制文件 将STM32F10x_StdPeriph_Li ...
- 使用Blynk打造一款物联网产品
前言 一直以来想自己打造一款物联网产品. 围绕这个话题写过一些文章: 一辆树莓派可编程小车的问题 基于树莓派的积木化编程解决方案 物联网相关开源项目整理 物联网.开源硬件与开源社区 之前在一辆树莓派可 ...
- 非Java程序员转行Java-day01-入门基础
1.学习大纲介绍 课件中的代码及资料:提取码:yexw 学习中的依赖包及安装文件:提取码 :8par 2.数据流向分析 2.1.应用型软件开发本质 增删改查(非常重要,5星) 2.2.大型网站演变历史 ...