Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code
Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code
题意:
给出\(n\)个俄罗斯套娃,每个套娃都有一个\(in_i,out_i\),并满足\(out_i>in_i\)。定义套娃\(i\)能套在套娃\(j\)里面,当且仅当\(out_i\leq in_j\)。
定义极大套娃组:当且仅当不能有另外一个套娃套在它们身上。
定义套娃组额外空间为\(in_1+(in_2-out_1)+\cdots +(in_k-out_{k-1})\),其中\(k\)为最大的那个套娃。
现在求额外空间最小的极大套娃组都多少个。
思路:
将上面求和式子变换一下有:
\]
分析这个式子,也就是对于一个在最外面的套娃\(k\)来说,其余里面套娃的贡献就为\(in_i-out_i\),是独立的。
首先将所有套娃按\(in\)升序排序,之后依次枚举每一个套娃并将其视作最后一个套娃。假设当前枚举的\(i\),那么\(dp(i)=min_{out_j\leq in_i}\{dp(j)\}+in_i\),\(dp\)中存储的是套娃的贡献值,\(dp(i)\)表示以\(i\)作结尾的套娃最小的额外空间是多少。
因为题目还要求数目,考虑转移的时候在线段树上面查询,同时维护一个\(sum\)记录个数,查询、更新的时候进行结点的合并,合并实现两个功能:一是找最小值,而是更新个数,详见代码即可。
最后统计答案的时候,找到所有的极大套娃组进行统计。
代码如下:
#include <bits/stdc++.h>
#define mp make_pair
#define fi first
#define se second
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int N = 2e5 + 5, MOD = 1e9 + 7;
int n;
pii a[N];
struct SEG{
struct node{
ll Min, sum;
node() {
sum = 0; Min = INF;
}
node(ll Min, ll sum) : Min(Min), sum(sum) {}
node operator + (const node &other) const {
node res = node();
if(Min < other.Min) {
res.Min = Min;
res.sum = sum;
} else if(Min == other.Min) {
res.Min = Min;
res.sum = (other.sum + sum) % MOD;
} else {
res.Min = other.Min;
res.sum = other.sum;
}
return res;
}
}t[N << 3], res;
void build(int o, int l, int r) {
if(l == r) {
t[o] = node();
return;
}
int mid = (l + r) >> 1;
build(o << 1, l, mid); build(o << 1|1, mid + 1, r);
}
void update(int o, int l, int r, int p, node v) {
if(l == r) {
t[o] = t[o] + v;
return ;
}
int mid = (l + r) >> 1;
if(p <= mid) update(o << 1, l, mid, p, v);
else update(o << 1|1, mid + 1, r, p, v);
t[o] = t[o << 1] + t[o << 1|1];
}
void query(int o, int l, int r, int L, int R) {
if(L <= l && r <= R) {
res = res + t[o];
return ;
}
int mid = (l + r) >> 1;
if(L <= mid) query(o << 1, l, mid, L, R);
if(R > mid) query(o << 1|1, mid + 1, r, L, R);
}
}seg;
int D, b[N << 1];
ll c[N], d[N];
int id(int x) {
return lower_bound(b + 1, b + D + 1, x) - b;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n;
for(int i = 1; i <= n; i++) {
cin >> a[i].se >> a[i].fi;
b[++D] = a[i].fi; b[++D] = a[i].se;
}
sort(a + 1, a + n + 1);
sort(b + 1, b + D + 1);
D = unique(b + 1, b + D + 1) - b - 1;
ll Min = INF;
seg.build(1, 1, D);
for(int i = 1; i <= n; i++) {
seg.res = SEG::node();
seg.query(1, 1, D, 1, id(a[i].fi));
if(seg.res.Min == INF) {
seg.res = SEG::node(a[i].fi - a[i].se, 1);
c[i] = 1; d[i] = a[i].fi;
seg.update(1, 1, D, id(a[i].se), seg.res);
} else {
c[i] = seg.res.sum;
d[i] = seg.res.Min + a[i].fi;
seg.res.Min += a[i].fi - a[i].se;
seg.update(1, 1, D, id(a[i].se), seg.res);
}
if(a[i].se > a[n].fi) Min = min(Min, d[i]);
}
ll ans = 0;
for(int i = 1; i <= n; i++)
if(a[i].se > a[n].fi && d[i] == Min)
ans = (ans + c[i]) % MOD;
cout << ans;
return 0;
}
Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code的更多相关文章
- Educational Codeforces Round 69 (Rated for Div. 2)
A. DIY ...
- Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp
D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...
- Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting 水题
C. Array Splitting You are given a sorted array
- Educational Codeforces Round 69 (Rated for Div. 2) A~D Sloution
A. DIY Wooden Ladder 题意:有一些不能切的木板,每个都有一个长度,要做一个梯子,求梯子的最大台阶数 做梯子的木板分为两种,两边的两条木板和中间的若干条台阶木板 台阶数为 $k$ 的 ...
- Educational Codeforces Round 69 (Rated for Div. 2)D(DP,思维)
#include<bits/stdc++.h>using namespace std;int a[300007];long long sum[300007],tmp[300007],mx[ ...
- Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting (思维)
题意:给你一个长度为\(n\)的升序序列,将这个序列分成\(k\)段,每一段的值为最大值和最小值的差,求\(k\)段值的最小和. 题解:其实每一段的最大值和最小值的差,其实就是这段元素的差分和,因为是 ...
- Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 【数学+分块】
一.题目 D. Yet Another Subarray Problem 二.分析 公式的推导时参考的洛谷聚聚们的推导 重点是公式的推导,推导出公式后,分块是很容易想的.但是很容易写炸. 1 有些地方 ...
- Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
随机推荐
- [Gamma]阶段发布说明
小小易校园微信小程序发布说明 第二版小小易校园小程序发布啦~ 打开微信,点击右上角➕,选择扫一扫,扫描以下二维码即可进入小程序: 版本功能: 上一版功能请参见[Beta阶段]发布说明. 当前版本的更新 ...
- 【Kubernetes学习之四】Kubernetes可视化管理
环境 centos 7 k8s-master 192.168.118.106 k8s-node01 192.168.118.107 k8s-node01 192.168.118.108 之前使用ku8 ...
- 理解Spring中的IoC和DI
什么是IoC和DI IoC(Inversion of Control 控制反转):是一种面向对象编程中的一种设计原则,用来减低计算机代码之间的耦合度.其基本思想是:借助于"第三方" ...
- Javascript的闭包(上)
了解了预编译和作用域的相关知识以后我们来看一下开发中常见的工具——闭包.还是来看一个实例. function a(){ function b() { ; console.log(aa); } ; re ...
- [转帖]分布式锁-redLock And Redisson
分布式锁-redLock And Redisson 2019-03-01 16:51:48 淹不死的水 阅读数 372更多 分类专栏: 分布式锁 版权声明:本文为博主原创文章,遵循CC 4.0 B ...
- 2014百度之星 Information
Information Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- es+logstash+kibana搭建
1.简介 ELK(elasticsearch+logstash+kibana)是目前比较常用的日志分析系统,包括日志收集(logstash),日志存储搜索(elasticsearch),展示查询(ki ...
- 【题解】Luogu P5471 [NOI2019]弹跳
原题传送门 先考虑部分分做法: subtask1: 暴力\(O(nm)\)枚举,跑最短路 subtask2: 吧一行的点压到vector中并排序,二分查找每一个弹跳装置珂以到达的城市,跑最短路 sub ...
- pandas mode()填充nan异常问题
df.mode()return的是一个frame,因为可能存在多个总数.那么用mode()来填充nan的时候就要注意了,如果直接 df.fillna(df.mode()) 会发现还是有很多空值没有填充 ...
- webpack等bundler是如何工作的-简化版本
webpack- why and how 首先不要被webpack做的复杂花哨的工作所迷惑,到底webpack是个啥?一句话,webpack是一个module bundler(模块打包器).多一句话, ...