Pandas学习笔记系列:

原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-3-pd-assign/ 本文有删改

创建数据

我们可以根据自己的需求, 用 pandas 进行更改数据里面的值, 或者加上一些空的,或者有数值的列.

首先建立了一个 6X4 的矩阵数据。

dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) """
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
"""

根据位置设置 loc 和 iloc

我们可以利用索引或者标签确定需要修改值的位置。

df.iloc[2,2] = 1111
df.loc['20130101','B'] = 2222 """
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 1111 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
"""

根据条件设置

如果现在的判断条件是这样, 我们想要更改B中的数, 而更改的位置是取决于 A 的. 对于A大于4的位置. 更改B在相应位置上的数为0.

df.B[df.A>4] = 0
"""
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 8 0 1111 11
2013-01-04 12 0 14 15
2013-01-05 16 0 18 19
2013-01-06 20 0 22 23
"""

按行或列设置

如果对整列做批处理, 加上一列 ‘F’, 并将 F 列全改为 NaN, 如下:

df['F'] = np.nan
"""
A B C D F
2013-01-01 0 2222 2 3 NaN
2013-01-02 4 5 6 7 NaN
2013-01-03 8 0 1111 11 NaN
2013-01-04 12 0 14 15 NaN
2013-01-05 16 0 18 19 NaN
2013-01-06 20 0 22 23 NaN
"""

添加数据

用上面的方法也可以加上 Series 序列(但是长度必须对齐)。

df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101',periods=6))
"""
A B C D F E
2013-01-01 0 2222 2 3 NaN 1
2013-01-02 4 5 6 7 NaN 2
2013-01-03 8 0 1111 11 NaN 3
2013-01-04 12 0 14 15 NaN 4
2013-01-05 16 0 18 19 NaN 5
2013-01-06 20 0 22 23 NaN 6
"""

注意添加新的一列数据时一定要记得指明index,因为你不指明index的话,即使新的列元素数量和原来DataFrame一样,那么最终还是会以NaN的格式初始化,看下面例子:

df['E'] = pd.Series([1,2,3,4,5,6],)
print(df) """
A B C D E
2013-01-01 0 1 2 3 NaN
2013-01-02 4 5 6 7 NaN
2013-01-03 8 9 10 11 NaN
2013-01-04 12 13 14 15 NaN
2013-01-05 16 17 18 19 NaN
2013-01-06 20 21 22 23 NaN
"""

当然如果我们指定的index和原来的不一样也没关系,因为pandas会自动把没有对应的部分填充为NaN,例子如下:

df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130103',periods=6))
print(df) """
A B C D E
2013-01-01 0 1 2 3 NaN
2013-01-02 4 5 6 7 NaN
2013-01-03 8 9 10 11 1.0
2013-01-04 12 13 14 15 2.0
2013-01-05 16 17 18 19 3.0
2013-01-06 20 21 22 23 4.0
"""

微信公众号:AutoML机器学习

MARSGGBO♥原创

如有意合作或学术讨论欢迎私戳联系~
邮箱:marsggbo@foxmail.com




2019-10-30 11:50:49

【转】Pandas学习笔记(三)修改&添加值的更多相关文章

  1. [C#] 类型学习笔记三:自定义值类型

    既前两篇之后,这一篇我们讨论通过struct 关键字自定义值类型. 在第一篇已经讨论过值类型的优势,节省空间,不会触发Gargage Collection等等. 在对性能要求比较高的场景下,通过str ...

  2. 【转】Pandas学习笔记(四)处理丢失值

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  3. WPF-学习笔记 动态修改控件Margin的值

    原文:WPF-学习笔记 动态修改控件Margin的值 举例说明:动态添加一个TextBox到Grid中,并设置它的Margin: TextBox text = new TextBox(); t_gri ...

  4. 【转】Pandas学习笔记(七)plot画图

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  5. 【转】Pandas学习笔记(六)合并 merge

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  6. 【转】Pandas学习笔记(五)合并 concat

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  7. 【转】Pandas学习笔记(二)选择数据

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  8. 【转】Pandas学习笔记(一)基本介绍

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  9. JSP学习笔记(三):简单的Tomcat Web服务器

    注意:每次对Tomcat配置文件进行修改后,必须重启Tomcat 在E盘的DATA文件夹中创建TomcatDemo文件夹,并将Tomcat安装路径下的webapps/ROOT中的WEB-INF文件夹复 ...

随机推荐

  1. python的小数据池

    一.什么是小数据池? 小数据池是一种缓存机制,也被称为驻留机制.各种编程语言中都有类似的东西(常量池.小数据池都是指得同一个内容). python自动将-5~256的整数.有一定规则的字符串.都放在一 ...

  2. Linux性能优化实战学习笔记:第十三讲

    问题1:性能工具版本太低,导致指标不全 解决方案1: 这是使用 CentOS 的同学普遍碰到的问题.在文章中,我的pidstat 输出里有一个 %wait 指标,代表进程等待 CPU 的时间百分比, ...

  3. [LeetCode] 839. Similar String Groups 相似字符串组

    Two strings X and Y are similar if we can swap two letters (in different positions) of X, so that it ...

  4. 【洛谷】P4594 [COCI2011-2012#5] BLOKOVI

    本来已经有一个专门记录洛谷题目的博客了,但这个题之毒瘤...... 为你专门写一篇总行了吧...... 传送门 先说一句,这个题每次摆放都靠到最右边不一定是最优的 因为它可以这个亚子 就是说上面那个块 ...

  5. Oracle 10G RAC集群安装

    一,基本环境配置 01,hosts cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.loc ...

  6. golang web 方案

    概要 开发 web 框架 数据库 认证 日志 配置 静态文件服务 上传/下载 发布 docker 打包 部署中遇到的问题 时区问题 概要 轻量的基于 golang 的 web 开发实践. golang ...

  7. 论文阅读: Infrastructure-Based Calibration of a Multi-Camera Rig

    Abstract 在线标定很重要. 但是目前的方法都计算量都很高. 我们的方案不需要标定板之类的东西. 我们的方案不需要假设相机有重合的FOV,也不需要任何的初始猜测. 当相机模组行驶穿过之前建过地图 ...

  8. Python OpenCV 显示图片,图片分类

    def divide_image(path,g_path1,g_path0): img_lst = os.listdir(path) for i in img_lst: print('类别1,类别0' ...

  9. update改数据详解

    update修改数据的要素  : 改哪张表? 改哪几列的值? 分别改成什么值? 在哪些行生效?(这个很重要,否则所有行都会受影响) mysql> update class ; where 表达式 ...

  10. Appium+python自动化(一)- 环境搭建—上(超详解)

    简介 今天是高考各地由于降水,特别糟糕,各位考生高考加油,全国人民端午节快乐.最近整理了一下自动化的东西,先前整理的python接口自动化已经接近尾声.即将要开启新的征程和篇章(Appium& ...