FWT-快速沃尔什变换
FWT-快速沃尔什变换
FWT有啥用啊
我们知道,FFT
可以解决多项式的卷积,即
\]
如果将操作符换一下,换成集合运算符
比如
\]
这时就不能使用FFT
了
但是FFT
使我们产生了一种想法
我们能不能用一种类似FFT
的方法,用另一个多项式来表示\(A,B\),然后再对应相乘,最后再变换回来呢
答案是可以的,这就是FWT
,即快速沃尔什变换
咋搞啊
我们以或运算举例:
我们按照定义,显然可以构造 \(FWT[A] = A' = \sum_{i=i|j}A_{j}\) ,来表示 \(j\) 满足二进制中 \(1\) 为 \(i\) 的子集。
那么显然会有 \(C_{i} = \sum_{i=j|k}A_{j}*B_{k} \Rightarrow FWT[C] = FWT[A] * FWT[B]\)
至于上面这个是怎么来的:
FWT[C][i]&=FWT[A][i]*FWT[B][i]\\
\sum_{j|i}C_j&=(\sum_{j|i}A_j)*(\sum_{j|i}B_j) \\
\sum_{j|i}C_j&=\sum_{j|i,k|i} A_jB_k\\
\sum_{j|i}C_j&=\sum_{j|i}\sum_{a|b=j}A_aB_b\\
C_j&=\sum_{a|b=j}A_aB_b
\end{aligned}
\]
这样就和上面我们想要的式子一样了。
一堆定义/结论
别问我怎么推的,我也不知道。
在这里有详细的证明。
通用性质
性质1:
\]
性质2:
定义\(\oplus\)为任意集合运算
\]
或运算
定义:
\]
正向运算:
\]
逆向运算:
\]
与运算
定义:
\]
正向运算:
\]
逆向运算:
\]
异或运算
定义:
令\(d(x)\)为\(x\)在二进制下拥有的1的数量
\]
正向运算:
\]
逆向运算:
\]
板子
- 按位或
- 按位与
- 按位异或
//by Harry_bh
void FWT1(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)a[j+(mid>>1)]+=a[j];
}
void IFWT1(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)a[j+(mid>>1)]-=a[j];
}
void FWT2(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)a[j]+=a[j+(mid>>1)];
}
void IFWT2(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)a[j]-=a[j+(mid>>1)];
}
void FWT3(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)
{
long long x=a[j],y=a[j+(mid>>1)];
a[j]=x+y,a[j+(mid>>1)]=x-y;
}
}
inline void IFWT3(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)
{
long long x=a[j],y=a[j+(mid>>1)];
a[j]=(x+y)>>1,a[j+(mid>>1)]=(x-y)>>1;
}
}
参考资料
FWT-快速沃尔什变换的更多相关文章
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- 浅谈算法——FWT(快速沃尔什变换)
其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_ ...
- 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)
知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...
- 初学FWT(快速沃尔什变换) 一点心得
FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi=j⊕k=i∑Aj∗Bk此处乘号为普通乘法 ...
- FWT快速沃尔什变换例题
模板题 传送门 #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(a):(b)) #de ...
- FWT快速沃尔什变换——基于朴素数学原理的卷积算法
这是我的第一篇学习笔记,如有差错,请海涵... 目录 引子 卷积形式 算法流程 OR卷积 AND卷积 XOR卷积 模板 引子 首先,考虑这是兔子 数一数,会发现你有一只兔子,现在,我再给你一只兔子 再 ...
- FWT快速沃尔什变换
前言 学多项式怎么能错过\(FWT\)呢,然而这真是个毒瘤的东西,蒟蒻就只会背公式了\(\%>\_<\%\) 或卷积 \[\begin{aligned}\\ tf(A) = (tf(A_0 ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
随机推荐
- SpringCloud之Eureka详细的配置
介绍 SpringCloud是一个完整的微服务治理框架,包括服务发现和注册,服务网关,熔断,限流,负载均衡和链路跟踪等组件. SpringCloud-Eureka主要提供服务注册和发现功能.本文提供了 ...
- 【UOJ#389】【UNR#3】白鸽(欧拉回路,费用流)
[UOJ#389][UNR#3]白鸽(欧拉回路,费用流) 题面 UOJ 题解 首先第一问就是判断是否存在一条合法的欧拉回路,这个拿度数和连通性判断一下就行了. 第二问判断转的圈数,显然我们只需要考虑顺 ...
- LocalDB 从2017更换到2014后一直显示连接不正确解决方案
问题描述:LocalDB 版本混装后出现默认实例创建不成功 无法连接到 (LocalDB)\MSSQLLocalDB. ------------------------------其他信息: 在与 S ...
- 解决基于TypeScript 的 RN项目相对路径引入组件的问题
一.前言 在开发RN项目时,经常会要使用这样的方式(../../../)来引入组件,感觉非常繁琐,如果项目结构层级比较多,引入的头部更加分不清. 那有没有一种方案和vue项目一样,经过配置后简写路径, ...
- GO学习笔记 - 模版渲染及多种输出
本文主题:基于内置的text/template实现Golang模版渲染,并将结果写入文件.屏幕.变量. 小慢哥的原创文章,欢迎转载 目录 ▪ 定义结构体 ▪ 定义模版文本 ▪ 模版渲染及输出方式 ▪ ...
- 将Windows网络适配器共享网络的ip:192.168.137.1 改为其他IP
修改注册表 方法1 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\SharedAccess\Parameters 中的: ScopeAddr ...
- 使用jqPrint.js调用浏览器打印界面,打印网页中的某一部分该部分含有ECharts图表
1.准备好js文件(我用的是谷歌浏览器) 这个文件是为了防止你的jQuery版本过高而不适配的问题 这是调用浏览器打印的js插件 2.引入js文件 <script src="js/jq ...
- 前端vue项目js中怎么保证链式调用后台接口
在一个for循环中对同一接口调用多次,如何保证逐步执行,同步执行. html部分 <DcFileUpload v-for="(item, index) of fileLengthLis ...
- Redis入门学习(二):下载安装
Linux操作系统 Download, extract and compile Redis with: $ wget http://download.redis.io/releases/redis-4 ...
- 智能家居-2.基于esp8266的语音控制系统(硬件篇)
智能家居-1.基于esp8266的语音控制系统(开篇) 智能家居-2.基于esp8266的语音控制系统(硬件篇) 智能家居-3.基于esp8266的语音控制系统(软件篇) 赞赏支持 QQ:505645 ...