KS(Kolmogorov-Smirnov)值
KS(Kolmogorov-Smirnov)值越大,表示模型能够将正、负客户区分开的程度越大。KS值的取值范围是[0,1]
ks越大,表示计算预测值的模型区分好坏用户的能力越强。
| ks值 | 含义 |
|---|---|
| > 0.3 | 模型预测性较好 |
| 0,2~0.3 | 模型可用 |
| 0~0.2 | 模型预测能力较差 |
| < 0 | 模型错误 |
通常来讲,KS>0.2即表示模型有较好的预测准确性。
ks求解方法:
ks需要TPR和FPR两个值:真正类率(true positive rate ,TPR), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。另外一个是假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。KS=max(TPR-FPR)。其中:
TP:真实为1且预测为1的数目
FN:真实为1且预测为0的数目
FP:真实为0的且预测为1的数目
TN:真实为0的且预测为0的数目
一句话概括:
KS曲线是两条线,其横轴是阈值,纵轴是TPR(上面那条)与FPR(下面那条)的值,值范围[0,1] 。两条曲线之间之间相距最远的地方对应的阈值,就是最能划分模型的阈值。
计算步骤:
1. 按照分类模型返回的概率升序排列 ,也可以直接是数据,根据某一阈值判断为1或0即可
2. 把0-1之间等分N份,等分点为阈值,计算TPR、FPR (可以将每一个都作为阈值)
3. 对TPR、FPR描点画图即可 (以10%*k(k=1,2,3,…,9)为横坐标,分别以TPR和FPR的值为纵坐标,就可以画出两个曲线,这就是K-S曲线。)
KS值即为Max(TPR-FPR)
Python代码实现:
#-*- coding:utf-8 -*-
#自己实现计算ks与调包
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
import seaborn as sns
#%matplotlib inline
#%config InlineBackend.figure_format = 'retina'
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体设置-黑体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
sns.set(font='SimHei') # 解决Seaborn中文显示问题 class BinJianAna:
def __init__(self):
pass def ComuTF(self,lst1,lst2):
#计算TPR和FPR
#lst1为真实值,lst2为预测值
TP = sum([1 if a==b==1 else 0 for a,b in zip(lst1,lst2)])#正例被预测为正例
FN = sum([1 if a==1 and b==0 else 0 for a,b in zip(lst1,lst2)])#正例被预测为反例
TPR = TP/(TP+FN)
TN = sum([1 if a==b==0 else 0 for a,b in zip(lst1,lst2)])#反例被预测为反例
FP = sum([1 if a==0 and b==1 else 0 for a,b in zip(lst1,lst2)])#反例被预测为正例
FPR = FP/(TN+FP)
return TPR - FPR def Getps_ks(self,real_data,data):
#real_data为真实值,data为原数据
d = []
for i in data:
pre_data = [1 if line >=i else 0 for line in data]
d.append(self.ComuTF(real_data,pre_data))
return max(d),data[d.index(max(d))] def GetKS(self,y_test,y_pred_prob):
'''
功能: 计算KS值,输出对应分割点和累计分布函数曲线图
输入值:
y_pred_prob: 一维数组或series,代表模型得分(一般为预测正类的概率)
y_test: 真实值,一维数组或series,代表真实的标签({0,1}或{-1,1})
'''
fpr,tpr,thresholds = roc_curve(y_test,y_pred_prob)
ks = max(tpr-fpr)
#画ROC曲线
plt.plot([0,1],[0,1],'k--')
plt.plot(fpr,tpr)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.show()
#画ks曲线
plt.plot(tpr)
plt.plot(fpr)
plt.plot(tpr-fpr)
plt.show()
return fpr,tpr,thresholds,ks if __name__ == '__main__':
a = BinJianAna()
data = [790,22,345,543,564,342,344,666,789,123,231,234,235,347,234,237,178,198,567,222]#原始评分数据
real_data = [1,1,1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0]
y_pred_prob = [0.42,0.73,0.55,0.37,0.57,0.70,0.25,0.23,0.46,0.62,0.76,0.46,0.55,0.56,0.56,0.38,0.37,0.73,0.77,0.21]
#以下只为演示如何调用方法,2种方法独立计算,数据之间无关联,因此得出的ks不一样
print(a.Getps_ks(real_data,data))#自己实现
print(a.GetKS(real_data,y_pred_prob))#代码实现
本文链接:https://blog.csdn.net/sinat_30316741/article/details/80018932
KS(Kolmogorov-Smirnov)值的更多相关文章
- 柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)
柯尔莫哥洛夫-斯米尔诺夫检验(Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同. 在进行cumulative probab ...
- Kolmogorov–Smirnov test(KS)
sklearn实战-乳腺癌细胞数据挖掘( 博主亲自录制) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...
- 反思K-S指标(KPMG大数据挖掘)
评估信用评级模型,反思K-S指标 2015-12-05 KPMG大数据团队 KPMG大数据挖掘 “信用评级”的概念听起来可以十分直截了当.比如一天早上你接到电话,有个熟人跟你借钱,而你将在半睡半醒间迅 ...
- R语言与正态性检验
1.Kolmogorov-Smirnov正态性检验 Kolmogorov-Smirnov是比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法,若两者间的差距很小,则推论该样本取自某 ...
- 【R】正态检验与R语言
正态检验与R语言 1.Kolmogorov–Smirnov test 统计学里, Kolmogorov–Smirnov 检验(亦称:K–S 检验)是用来检验数据是否符合某种分布的一种非参数检验,通过比 ...
- Tests for normality正态分布检验
欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/ ...
- Applied Nonparametric Statistics-lec10
Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/14 估计CDF The Empirical CDF ...
- PP图和QQ图
一. QQ图 分位数图示法(Quantile Quantile Plot,简称 Q-Q 图) 统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们 ...
- Spark 1.5新特性介绍
一.DataFrame执行后端优化(Tungsten第一阶段) DataFrame可以说是整个Spark项目最核心的部分,在1.5这个开发周期内最大的变化就是Tungsten项目的第一阶段已经完成.主 ...
- Q-Q图和P-P图
一. QQ图 分位数图示法(Quantile Quantile Plot,简称 Q-Q 图) 统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们 ...
随机推荐
- 自制php操作mysql工具类(DB.class.php)
DB.class.php <?php class DB{ //主机地址 var $host; //用户名 var $username; //密码 var $password; //数据库名 va ...
- java ArrayList的remove()方法的参数为int和Integer的问题
ArrayList的父类List中,有2个remove重载方法: remove(int index) remove(Object o) 假如参数输入为数字类型,到底是删除值等于该数字的对象还是删除索引 ...
- Centos7修改默认启动内核
#使用cat /boot/grub2/grub.cfg |grep menuentry 查看系统可用内核 root@Cs7-:/root> cat /boot/grub2/grub.cfg | ...
- mysql 创建新用户 并赋予权限
1.以管理员身份登录mysql mysql -u root -p 2.选择mysql数据库 use mysql 3.创建用户并设定密码 create user 'testuser'@'localhos ...
- vs中找到接口和抽象类的具体实现类
如何找到接口和抽象类的具体实现类 1,可以使用:ctrl+k clrl+t打开调用层次结构窗口: 2,移动到实现节点: 3,然后可以转到具体实现: 第二种安装插件 ReSharper 第三种方法: 在 ...
- python温度转换代码
#TempConvert.py TempStr=input("请输入带有符号的温度值:")#赋值TempStr,括号里面的是提示 if TempStr[-1] in ['F','f ...
- java连接Oracle数据库的操作说明
在测试中,我们常常需要连接Oracle数据库来进行查询对比.下面,我们就来看看,如何使用java代码来连接数据库,并且取出我们想要的数值. 首先,java中如果要连接Oracle数据库,需要jdbc的 ...
- HTTP头部
10-URI的基本格式以及与URL的区别 HTTP连接的常见流程 从TCP编程上看HTTP请求处理 长连接与短连接 补充一下代理的知识 什么是正向代理,什么是反向代理? 想在外部公网访问公司内部局域网 ...
- LeetCode 311. Sparse Matrix Multiplication
原题链接在这里:https://leetcode.com/problems/sparse-matrix-multiplication/description/ 题目: Given two sparse ...
- SP1825 【FTOUR2 - Free tour II】
# \(SP1825\) 看到没有人用老师的办法,于是自己写一下思路 思路第一步:排除旧方法 首先这道题和\(4178\)不一样,因为那道题是计数,而这道题是求最值,最值有个坏处,就是对于来自相同子树 ...