统一流控服务开源:基于.Net Core的流控服务

 

先前有一篇博文,梳理了流控服务的场景、业界做法和常用算法

统一流控服务开源-1:场景&业界做法&算法篇

最近完成了流控服务的开发,并在生产系统进行了大半年的验证,稳定可靠。今天整理一下核心设计和实现思路,开源到Github上,分享给大家

https://github.com/zhouguoqing/FlowControl

 一、令牌桶算法实现

先回顾一下令牌桶算法示意图

随着时间流逝,系统会按恒定1/QPS时间间隔(如果QPS=100,则间隔是10ms) 往桶里加入Token(想象和漏洞漏水相反,有个水龙头在不断的加水),

如果桶已经满了就不再加了. 新请求来临时, 会各自拿走一个Token,如果没有Token可拿了就阻塞或者拒绝服务.

令牌添加速度支持动态变化,实时控制处理的速率.

令牌桶有两个关键的属性:令牌桶容量(大小)和时间间隔,

有两个关键操作,从令牌桶中取Token;令牌桶定时的Reset重置。

  我们看TokenBucket类:

using System;

namespace CZ.FlowControl.Service
{
using CZ.FlowControl.Spi;
/// <summary>
/// 令牌桶
/// </summary>
public abstract class TokenBucket : IThrottleStrategy
{
protected long bucketTokenCapacity;
private static readonly object syncRoot = new object();
protected readonly long ticksRefillInterval;
protected long nextRefillTime; //number of tokens in the bucket
protected long tokens; protected TokenBucket(long bucketTokenCapacity, long refillInterval, long refillIntervalInMilliSeconds)
{
if (bucketTokenCapacity <= 0)
throw new ArgumentOutOfRangeException("bucketTokenCapacity", "bucket token capacity can not be negative");
if (refillInterval < 0)
throw new ArgumentOutOfRangeException("refillInterval", "Refill interval cannot be negative");
if (refillIntervalInMilliSeconds <= 0)
throw new ArgumentOutOfRangeException("refillIntervalInMilliSeconds", "Refill interval in milliseconds cannot be negative"); this.bucketTokenCapacity = bucketTokenCapacity;
ticksRefillInterval = TimeSpan.FromMilliseconds(refillInterval * refillIntervalInMilliSeconds).Ticks;
} /// <summary>
/// 是否流控
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
public bool ShouldThrottle(long n = 1)
{
TimeSpan waitTime;
return ShouldThrottle(n, out waitTime);
}
public bool ShouldThrottle(long n, out TimeSpan waitTime)
{
if (n <= 0) throw new ArgumentOutOfRangeException("n", "Should be positive integer"); lock (syncRoot)
{
UpdateTokens();
if (tokens < n)
{
var timeToIntervalEnd = nextRefillTime - SystemTime.UtcNow.Ticks;
if (timeToIntervalEnd < 0) return ShouldThrottle(n, out waitTime); waitTime = TimeSpan.FromTicks(timeToIntervalEnd);
return true;
}
tokens -= n; waitTime = TimeSpan.Zero;
return false;
}
} /// <summary>
/// 更新令牌
/// </summary>
protected abstract void UpdateTokens(); public bool ShouldThrottle(out TimeSpan waitTime)
{
return ShouldThrottle(1, out waitTime);
} public long CurrentTokenCount
{
get
{
lock (syncRoot)
{
UpdateTokens();
return tokens;
}
}
}
}
}

这个抽象类中,将UpdateToken作为抽象方法暴露出来,给实现类更多的灵活去控制令牌桶重置操作。基于此实现了“固定令牌桶”FixedTokenBucket

    /// <summary>
/// 固定令牌桶
/// </summary>
class FixedTokenBucket : TokenBucket
{
public FixedTokenBucket(long maxTokens, long refillInterval, long refillIntervalInMilliSeconds)
: base(maxTokens, refillInterval, refillIntervalInMilliSeconds)
{
} protected override void UpdateTokens()
{
var currentTime = SystemTime.UtcNow.Ticks; if (currentTime < nextRefillTime)
return; tokens = bucketTokenCapacity;
nextRefillTime = currentTime + ticksRefillInterval;
}
}

固定令牌桶在每次取Token时,都要执行方法ShouldThrottle。这个方法中:

并发取Token是线程安全的,这个地方用了Lock控制,损失了一部分性能。同时每次获取可用Token的时候,都会实时Check一下是否需要到达Reset令牌桶的时间。

获取到可用令牌后,令牌桶中令牌的数量-1。如果没有足够的可用令牌,则返回等待到下次Reset令牌桶的时间。如下代码:

        public bool ShouldThrottle(long n, out TimeSpan waitTime)
{
if (n <= 0) throw new ArgumentOutOfRangeException("n", "Should be positive integer"); lock (syncRoot)
{
UpdateTokens();
if (tokens < n)
{
var timeToIntervalEnd = nextRefillTime - SystemTime.UtcNow.Ticks;
if (timeToIntervalEnd < 0) return ShouldThrottle(n, out waitTime); waitTime = TimeSpan.FromTicks(timeToIntervalEnd);
return true;
}
tokens -= n; waitTime = TimeSpan.Zero;
return false;
}
}

以上就是令牌桶算法的实现。我们继续看漏桶算法。

 二、漏桶算法实现

首先回顾一下漏桶算法的原理:

水(请求)先进入到漏桶里,漏桶以一定的速度出水(接口有响应速率),

当水流入速度过大会直接溢出(访问频率超过接口响应速率), 然后就拒绝请求,

可以看出漏桶算法能强行限制数据的传输速率.

有两个变量:

  • 一个是桶的大小,支持流量突发增多时可以存多少的水(burst),
  • 另一个是水桶漏洞的大小(rate)。

漏桶抽象类:LeakTokenBucket,继承与令牌桶抽象父类 TokenBucket,说明了获取令牌(漏出令牌)在底层的方式是一致的,不一样的是重置令牌的方式(务必理解这一点)

using System;

namespace CZ.FlowControl.Service
{
/// <summary>
/// 漏桶
/// </summary>
abstract class LeakyTokenBucket : TokenBucket
{
protected readonly long stepTokens;
protected long ticksStepInterval; protected LeakyTokenBucket(long maxTokens, long refillInterval, int refillIntervalInMilliSeconds,
long stepTokens, long stepInterval, int stepIntervalInMilliseconds)
: base(maxTokens, refillInterval, refillIntervalInMilliSeconds)
{
this.stepTokens = stepTokens;
if (stepInterval < 0) throw new ArgumentOutOfRangeException("stepInterval", "Step interval cannot be negative");
if (stepTokens < 0) throw new ArgumentOutOfRangeException("stepTokens", "Step tokens cannot be negative");
if (stepIntervalInMilliseconds <= 0) throw new ArgumentOutOfRangeException("stepIntervalInMilliseconds", "Step interval in milliseconds cannot be negative"); ticksStepInterval = TimeSpan.FromMilliseconds(stepInterval * stepIntervalInMilliseconds).Ticks;
}
}
}

可以看出,漏桶是在令牌桶的基础上增加了二个重要的属性:这两个属性决定了重置令牌桶的方式

stepTokens:每间隔时间内漏的数量

ticksStepInterval:漏的间隔时间

举个例子:TPS 100,即每秒漏出100个Token,stepTokens =100, ticksStepInterval=1000ms

漏桶的具体实现有两种:空桶和满桶

StepDownTokenBucket 满桶:即一把将令牌桶填充满

 

StepUpLeakyTokenBucket 空桶:即每次只将stepTokens个数的令牌放到桶中

 

三、流控服务封装

第二章节,详细介绍了令牌桶和漏桶的具体实现。基于以上,要重点介绍接口:IThrottleStrategy:流控的具体方式

using System;

namespace CZ.FlowControl.Spi
{
/// <summary>
/// 流量控制算法策略
/// </summary>
public interface IThrottleStrategy
{
/// <summary>
/// 是否流控
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
bool ShouldThrottle(long n = 1); /// <summary>
/// 是否流控
/// </summary>
/// <param name="n"></param>
/// <param name="waitTime"></param>
/// <returns></returns>
bool ShouldThrottle(long n, out TimeSpan waitTime); /// <summary>
/// 是否流控
/// </summary>
/// <param name="waitTime"></param>
/// <returns></returns>
bool ShouldThrottle(out TimeSpan waitTime); /// <summary>
/// 当前令牌个数
/// </summary>
long CurrentTokenCount { get; }
}
}

有了这个流控方式接口后,我们还需要一个流控策略定义类:FlowControlStrategy

即定义具体的流控策略:以下是这个类的详细属性和成员:  不仅定义了流控策略类型,还定义了流控的维度信息和流控阈值,这样流控就做成依赖注入的方式了!

using System;
using System.Collections.Generic;
using System.Text; namespace CZ.FlowControl.Spi
{
/// <summary>
/// 流控策略
/// </summary>
public class FlowControlStrategy
{
/// <summary>
/// 标识
/// </summary>
public string ID { get; set; } /// <summary>
/// 名称
/// </summary>
public string Name { get; set; } /// <summary>
/// 流控策略类型
/// </summary>
public FlowControlStrategyType StrategyType { get; set; } /// <summary>
/// 流控阈值-Int
/// </summary>
public long IntThreshold { get; set; } /// <summary>
/// 流控阈值-Double
/// </summary>
public decimal DoubleThreshold { get; set; } /// <summary>
/// 时间区间跨度
/// </summary>
public FlowControlTimespan TimeSpan { get; set; } private Dictionary<string, string> flowControlConfigs; /// <summary>
/// 流控维度信息
/// </summary>
public Dictionary<string, string> FlowControlConfigs
{
get
{
if (flowControlConfigs == null)
flowControlConfigs = new Dictionary<string, string>(); return flowControlConfigs;
}
set
{
flowControlConfigs = value;
}
} /// <summary>
/// 描述
/// </summary>
public string Descriptions { get; set; } /// <summary>
/// 触发流控后是否直接拒绝请求
/// </summary>
public bool IsRefusedRequest { get; set; } /// <summary>
/// 创建时间
/// </summary>
public DateTime CreateTime { get; set; } /// <summary>
/// 创建人
/// </summary>
public string Creator { get; set; } /// <summary>
/// 最后修改时间
/// </summary>
public DateTime LastModifyTime { get; set; } /// <summary>
/// 最后修改人
/// </summary>
public string LastModifier { get; set; }
}
}

同时,流控策略类型,我们抽象了一个枚举:FlowControlStrategyType

支持3种流控策略:TPS、Sum(指定时间段内请求的次数),Delay延迟

using System;
using System.Collections.Generic;
using System.Text; namespace CZ.FlowControl.Spi
{
/// <summary>
/// 流控策略类型枚举
/// </summary>
public enum FlowControlStrategyType
{
/// <summary>
/// TPS控制策略
/// </summary>
TPS,
/// <summary>
/// 总数控制策略
/// </summary>
Sum, /// <summary>
/// 延迟控制策略
/// </summary>
Delay
}
}

面向每种流控策略类型,提供了一个对应的流控器,比如说TPS的流控器

TPSFlowController,内部使用了固定令牌桶算法
using System;

namespace CZ.FlowControl.Service
{
using CZ.FlowControl.Spi; /// <summary>
/// TPS流量控制器
/// </summary>
class TPSFlowController : IFlowController
{
public IThrottleStrategy InnerThrottleStrategy
{
get; private set;
} public FlowControlStrategy FlowControlStrategy { get; private set; } public bool ShouldThrottle(long n, out TimeSpan waitTime)
{
return InnerThrottleStrategy.ShouldThrottle(n, out waitTime);
} public TPSFlowController(FlowControlStrategy strategy)
{
FlowControlStrategy = strategy; InnerThrottleStrategy = new FixedTokenBucket(strategy.IntThreshold, 1, 1000);
}
}
}

Sum(指定时间段内请求的次数)流控器:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text; namespace CZ.FlowControl.Service
{
using CZ.FlowControl.Spi; /// <summary>
/// 一段时间内合计值流量控制器
/// </summary>
class SumFlowController : IFlowController
{
public IThrottleStrategy InnerThrottleStrategy
{
get; private set;
} public FlowControlStrategy FlowControlStrategy { get; private set; } public bool ShouldThrottle(long n, out TimeSpan waitTime)
{
return InnerThrottleStrategy.ShouldThrottle(n, out waitTime);
} public SumFlowController(FlowControlStrategy strategy)
{
FlowControlStrategy = strategy; var refillInterval = GetTokenBucketRefillInterval(strategy); InnerThrottleStrategy = new FixedTokenBucket(strategy.IntThreshold, refillInterval, 1000);
} private long GetTokenBucketRefillInterval(FlowControlStrategy strategy)
{
long refillInterval = 0; switch (strategy.TimeSpan)
{
case FlowControlTimespan.Second:
refillInterval = 1;
break;
case FlowControlTimespan.Minute:
refillInterval = 60;
break;
case FlowControlTimespan.Hour:
refillInterval = 60 * 60;
break;
case FlowControlTimespan.Day:
refillInterval = 24 * 60 * 60;
break;
} return refillInterval;
}
}
}

同时,通过一个创建者工厂,根据不同的流控策略,创建对应的流控器(做了一层缓存,性能更好):

using System;
using System.Collections.Generic;
using System.Text; namespace CZ.FlowControl.Service
{
using CZ.FlowControl.Spi; /// <summary>
/// 流控策略工厂
/// </summary>
class FlowControllerFactory
{
private static Dictionary<string, IFlowController> fcControllers;
private static object syncObj = new object(); private static FlowControllerFactory instance; private FlowControllerFactory()
{
fcControllers = new Dictionary<string, IFlowController>();
} public static FlowControllerFactory GetInstance()
{
if (instance == null)
{
lock (syncObj)
{
if (instance == null)
{
instance = new FlowControllerFactory();
}
}
} return instance;
} public IFlowController GetOrCreateFlowController(FlowControlStrategy strategy)
{
if (strategy == null)
throw new ArgumentNullException("FlowControllerFactory.GetOrCreateFlowController.strategy"); if (!fcControllers.ContainsKey(strategy.ID))
{
lock (syncObj)
{
if (!fcControllers.ContainsKey(strategy.ID))
{
var fcController = CreateFlowController(strategy);
if (fcController != null)
fcControllers.Add(strategy.ID, fcController);
}
}
} if (fcControllers.ContainsKey(strategy.ID))
{
var controller = fcControllers[strategy.ID];
return controller;
} return null;
} private IFlowController CreateFlowController(FlowControlStrategy strategy)
{
if (strategy == null)
throw new ArgumentNullException("FlowControllerFactory.CreateFlowController.strategy"); IFlowController controller = null; switch (strategy.StrategyType)
{
case FlowControlStrategyType.TPS:
controller = new TPSFlowController(strategy);
break;
case FlowControlStrategyType.Delay:
controller = new DelayFlowController(strategy);
break;
case FlowControlStrategyType.Sum:
controller = new SumFlowController(strategy);
break;
default:
break;
} return controller;
}
}
}

有了流控策略定义、我们更进一步,继续封装了流控Facade服务,这样把流控的变化封装到内部。对外只提供流控服务接口,流控时动态传入流控策略和流控个数:FlowControlService

using System;
using System.Collections.Generic;
using System.Text; namespace CZ.FlowControl.Service
{
using CZ.FlowControl.Spi;
using System.Threading; /// <summary>
/// 统一流控服务
/// </summary>
public class FlowControlService
{
/// <summary>
/// 流控
/// </summary>
/// <param name="strategy">流控策略</param>
/// <param name="count">请求次数</param>
public static void FlowControl(FlowControlStrategy strategy, int count = 1)
{
var controller = FlowControllerFactory.GetInstance().GetOrCreateFlowController(strategy); TimeSpan waitTimespan = TimeSpan.Zero; var result = controller.ShouldThrottle(count, out waitTimespan);
if (result)
{
if (strategy.IsRefusedRequest == false && waitTimespan != TimeSpan.Zero)
{
WaitForAvailable(strategy, controller, waitTimespan, count);
}
else if (strategy.IsRefusedRequest)
{
throw new Exception("触发流控!");
}
}
} /// <summary>
/// 等待可用
/// </summary>
/// <param name="strategy">流控策略</param>
/// <param name="controller">流控器</param>
/// <param name="waitTimespan">等待时间</param>
/// <param name="count">请求次数</param>
private static void WaitForAvailable(FlowControlStrategy strategy, IFlowController controller, TimeSpan waitTimespan, int count)
{
var timespan = waitTimespan;
if (strategy.StrategyType == FlowControlStrategyType.Delay)
{
Thread.Sleep(timespan);
return;
} while (controller.ShouldThrottle(count, out timespan))
{
Thread.Sleep(timespan);
}
}
}
}

以上,统一流控服务完成了第一个版本的封装。接下来我们看示例代码

 四、示例代码

    先安装Nuget:


Install-Package CZ.FlowControl.Service -Version 1.0.0

是不是很简单。

大家如果希望了解详细的代码,请参考这个项目的GitHub地址:

https://github.com/zhouguoqing/FlowControl

同时也欢迎大家一起改进完善。

周国庆

2019/8/9

 

Net Core的流控服务的更多相关文章

  1. 统一流控服务开源:基于.Net Core的流控服务

    先前有一篇博文,梳理了流控服务的场景.业界做法和常用算法 统一流控服务开源-1:场景&业界做法&算法篇 最近完成了流控服务的开发,并在生产系统进行了大半年的验证,稳定可靠.今天整理一下 ...

  2. 统一流控服务开源-1:场景&业界做法&算法篇

    最近团队在搞流量安全控制,为了应对不断增大的流量安全风险.Waf防护能做一下接入端的拦截,但是实际流量会打到整个分布式系统的每一环:Nginx.API网关.RPC服务.MQ消息应用中心.数据库.瞬间的 ...

  3. 性能百万/s:腾讯轻量级全局流控方案详解

    WeTest 导读 全新的全局流控实现方案,既解决了目前流控的实现难点,同时保证运行稳定且流控准确的前提下,实现更简单,部署成本更低,容灾能力更强. 该方案组件化之后,可以推广到别的有需要的部门使用, ...

  4. 性能百万/s:腾讯轻量级全局流控方案详解【转自Wetest】

    阿里用的方案是在nginx中配置限流(限流功能模块是自己开发的),流量统计线上是有监控打通的,具体的限流值是通过线上流量表现+线下性能测试(模拟线上场景)测试得出的. 全新的全局流控实现方案,既解决了 ...

  5. sentinel 集群流控原理

    为什么需要集群流控呢?假设需要将某个API的总qps限制在100,机器数可能为50,这时很自然的想到使用一个专门的server来统计总的调用量,其他实例与该server通信来判断是否可以调用,这就是基 ...

  6. Sentinel 发布里程碑版本,添加集群流控功能

    自去年10月底发布GA版本后,Sentinel在近期发布了另一个里程碑版本v1.4(最新的版本号是v1.4.1),加入了开发者关注的集群流控功能. 集群流控简介 为什么要使用集群流控呢?假设我们希望给 ...

  7. 详解API Gateway流控实现,揭开ROMA平台高性能秒级流控的技术细节

    摘要:ROMA平台的核心系统ROMA Connect源自华为流程IT的集成平台,在华为内部有超过15年的企业业务集成经验. 本文分享自华为云社区<ROMA集成关键技术(1)-API流控技术详解& ...

  8. 详解ROMA Connect API 流控实现技术

    摘要:本文将详细描述API Gateway流控实现,揭开高性能秒级流控的技术细节. 1.概述 ROMA平台的核心系统ROMA Connect源自华为流程IT的集成平台,在华为内部有超过15年的企业业务 ...

  9. Spring Cloud微服务安全实战_3-3_API安全之流控

    这几篇将API安全的 流控.认证.审计.授权 简单的过一遍,对这些概念先有个初步印象.后边还会详细讲解. 本篇说API安全之流控~第一印象. 一.概念 流控,流量控制,只放系统能处理的请求的数量过去, ...

随机推荐

  1. oracle 10 升级补丁

    Ooacle 10g补丁安装方法 Windows 平台 方法: 1.  备份数据库:关闭数据库,拷贝,安装软件目录,数据文件拷到另一个地方 2.  关闭停止所有oracle 服务+Distribute ...

  2. python排序 基数排序

    算法思想 基数排序通过按位比较(一般从最低位开始)将元素按照最低位的数放到10个桶中,当所有的元素都这样被处理一次后,在按从0到9的顺序将每个桶的元素再取出来(不关注其他位的,只关注当前位的)这样就完 ...

  3. python类的实例化

    class Person(object): # 创建类 def __init__(self, name): # 构造函数 self.name = name def getName(self): # 类 ...

  4. html、css/bootStrap、js/Jquery、ajax与json数据交互总结

    设计个个人网站,利用CSS.JavaScript.HTML5.jQuery库和AJAX等 实现网站各功能模块,下面介绍我设计的网站各大功能模块:  个人简历模块: 包涵个人基本信息(利用CSS的flo ...

  5. 01GitLab的使用——创建项目并上传到GitLab

    借鉴:https://jingyan.baidu.com/article/9c69d48fe68cce13c9024e9c.html 登录GitLab网站,创建一个项目上传地址:https://blo ...

  6. 使用vnc远程操控Centos7.6

    安装vncserver [root@elegant-snap-3 ~]# yum install tigervnc-server -y Loaded plugins: fastestmirror De ...

  7. itextpdf5生成document生成pdf的简单dome

    package dbzx.pdf; import java.io.FileNotFoundException; import java.io.FileOutputStream; import org. ...

  8. 海思3519 qt ffmpeg 软解码播放avi

    在海思3519上基于qt采用ffmpeg对avi进行解码显示,其中ffmpeg的配置,qt的配置在前文中已经说明,在此不再赘述. 解码 解码在单独的线程中进行,具体的代码如下: void VideoP ...

  9. Java JMS——消息服务

    转载请注明原文地址: https://www.cnblogs.com/ygj0930/p/10921569.html 一:什么是Java消息服务—— 消息通信接口规范 Java消息服务指的:两个应用程 ...

  10. XGBoost使用教程(进阶篇)三

    一.Importing all the libraries import pandas as pdimport numpy as npfrom matplotlib import pyplot as ...