处理大数据的方法有很多,目前我知道就这么多,后面会持续更新:

一、将数据分批次读取

csv格式是常见的数据存储方式,对于我们普通人而言易于读写。此外,在pandas中有pd.read_csv()函数可以将csv形式的数据进行读取。但当csv文件非常大的时候,直接读取会很吃内存,甚至会出现内存不够用的情况。

这时候我们可以 分批次(分块)读取,而不是一次性读取 这么大体量的数据。操作步骤:

  1. 分批次读取
  2. 处理每一批次
  3. 保存每一批次的结果
  4. 对所有的数据重复步骤1-3
  5. 将所有的批次结果都结合起来

pd.read_csv(chunksize) 中的chunksize指的的是每一批次的行数

import pandas as pd
chunk_iterator = pd.read_csv("test.vcf",sep="\t", chunksize=10000)
chunk_result_list = []
#每一批次都是dataframe类型
for chunk in chunk_iterator:
#根据你的分析问题,设计自己的chunk_manipulate函数
filter_result = chunk_manipulate(chunk)
chunk_result_list.append(filter_result)
#合并所有批次处理结果,形成新的dataframe
df = pd.concat(chunk_result_list)

  


二、常用方法读取大型文件

面对100w行的大型数据,经过测试各种文件读取方式,得出结论:

with open(filename,"rb") as f:
  for fLine in f:
  pass

这种方式最快,100w行全遍历2.7秒。

基本满足中大型文件处理效率需求。如果rb改为r,慢6倍。但是此方式处理文件,fLine为bytes类型。但是python自行断行,仍旧能很好的以行为单位处理读取内容。


四、文本处理效率问题

这里举例ascii定长文件,因为这个也并不是分隔符文件,所以打算采用列表操作实现数据分割。但是问题是处理20w条数据,时间急剧上升到12s。本以为是byte.decode增加了时间。遂去除decode全程bytes处理。但是发现效率还是很差。

最后用最简单方式测试,首次运行,最简单方式也要7.5秒100w次。

那么关于python处理大文件的技巧,从网络整理三点:列表、文件属性、字典三个点来看看。

1.列表处理

def fun(x):  尽量选择集合、字典数据类型,千万不要选择列表,列表的查询速度会超级慢,同样的,在已经使用集合或字典的情况下,不要再转化成列表进行操作,比如:

values_count = 0
# 不要用这种的
if values in dict.values():
  values_count += 1
# 尽量用这种的
if keys,values in dict:
  values_count += 1

后者的速度会比前者快好多好多。

2. 对于文件属性

如果遇到某个文件,其中有属性相同的,但又不能进行去重操作,没有办法使用集合或字典时,可以增加属性,比如将原数据重新映射出一列计数属性,让每一条属性具有唯一性,从而可以用字典或集合处理:

return '(' + str(x) + ', 1)'
list(map(fun,[1,2,3]))

使用map函数将多个相同属性增加不同项。

3. 对于字典

多使用iteritems()少使用items(),iteritems()返回迭代器:

>>> d = {'a':1,'b':2}
>>> for i in d.items() :
.... print i
('a',1)
('b',2)
>>> for k,v in d.iteritems() :
... print k,v
('a',1)
('b',2)

字典的items函数返回的是键值对的元组的列表,而iteritems使用的是键值对的generator,items当使用时会调用整个列表 iteritems当使用时只会调用值。


五、Datatable:性能碾压pandas的高效多线程数据处理库

提高python处理数据的效率方法的更多相关文章

  1. 用 Python 排序数据的多种方法

    用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭 ...

  2. python爬虫数据抓取方法汇总

    概要:利用python进行web数据抓取方法和实现. 1.python进行网页数据抓取有两种方式:一种是直接依据url链接来拼接使用get方法得到内容,一种是构建post请求改变对应参数来获得web返 ...

  3. python之数据库内置方法以及pymysql的使用

    一.mysql内置方法 1)视图的概念和用法 .什么是视图 视图就是通过查询得到一张虚拟表,然后保存下来,下次用的直接使用即可 .为什么要用视图 如果要频繁使用一张虚拟表,可以不用重复查询 .如何用视 ...

  4. 【学习】Python进行数据提取的方法总结【转载】

    链接:http://www.jb51.net/article/90946.htm 数据提取是分析师日常工作中经常遇到的需求.如某个用户的贷款金额,某个月或季度的利息总收入,某个特定时间段的贷款金额和笔 ...

  5. 提高python执行效率的方法

    python上手很容易,但是在使用过程中,怎么才能使效率变高呢? 下面说一下提高python执行效率的方法,这里只是说一点,python在引入模块过程中提高效率的方法. 例如: 1.我们要使用os模块 ...

  6. 提升SQLite数据插入效率低、速度慢的方法

    前言 SQLite数据库由于其简单.灵活.轻量.开源,已经被越来越多的被应用到中小型应用中.甚至有人说,SQLite完全可以用来取代c语言中的文件读写操作.因此我最近编写有关遥感数据处理的程序的时候, ...

  7. 提升SQLite数据插入效率低、速度慢的方法(转)

    前言 SQLite数据库由于其简单.灵活.轻量.开源,已经被越来越多的被应用到中小型应用中.甚至有人说,SQLite完全可以用来取代C语言中的文件读写操作.因此我最近编写有关遥感数据处理的程序的时候, ...

  8. [转载]提升SQLite数据插入效率低、速度慢的方法

    转载地址:http://blog.csdn.net/chenguanzhou123/article/details/9376537#,如果有侵犯原创,请留言告知,本人会及时删除. 前言 SQLite数 ...

  9. 使用Python解析JSON数据的基本方法

    这篇文章主要介绍了使用Python解析JSON数据的基本方法,是Python入门学习中的基础知识,需要的朋友可以参考下:     ----------------------------------- ...

随机推荐

  1. 对最长公共子序列(LCS)等一系列DP问题的研究

    LIS问题: 设\(f[i]\)为以\(a[i]\)结尾的最长上升子序列长度,有: \[f[i]=f[j]+1(j<i&&a[j]<a[i])\] 可以用树状数组优化至\( ...

  2. 【cf补题记录】Codeforces Round #607 (Div. 2)

    比赛传送门 这里推荐一位dalao的博客-- https://www.cnblogs.com/KisekiPurin2019/ A:字符串 B:贪心 A // https://codeforces.c ...

  3. 规范化使用MySQL

    如何更规范化使用MySQL 如何更规范化使用MySQL 背景:一个平台或系统随着时间的推移和用户量的增多,数据库操作往往会变慢:而在Java应用开发中数据库更是尤为重要,绝大多数情况下数据库的性能决定 ...

  4. mapreduce 函数入门 一

    MapReduce 程序的业务编码分为两个大部分,一部分配置程序的运行信息,一部分 编写该 MapReduce 程序的业务逻辑,并且业务逻辑的 map 阶段和 reduce 阶段的代码分别继 承 Ma ...

  5. Linux常用基础(一)

    1.命令解释器 shell---Unix操作系统 bash---Linux操作系统 本质:根据输入的命令,调用相应的执行程序. 2.Linux下的快捷键 (1)命令和路径补全 Tab键 (2)主键盘的 ...

  6. Java核心技术-读书笔记

    基本语法 Java中的所有函数都属于某个类的方法 Java没有任何无符号的int.long.short 或 byte 类型 浮点数值不适用于无法接受舍入误差的金融计算中,比如2.0-1.1不会输出想要 ...

  7. JMeter一台机器可以支持多大的并发量

    Support for concurrent thread is basically depends on many factors like OS, free RAM and connections ...

  8. asp.net core 日志记录到elk

    关于ELK的安装大家可以参考ubuntu18 docker中部署ELK 和 caas/docker-elk , 首先需要在ELK中创建一个index patterns ​ 首先我们创建一个aspnet ...

  9. 【题解】Editor [HDU4699]

    [题解]Editor [HDU4699] 传送: \(Editor\) \([HDU4699]\) [题目描述] 有一个维护整数序列的强大编辑器,初始状态为空,下面提供五种不同的操作,给出的总操作次数 ...

  10. asp.net core 系列之Performance的 Response compression(响应压缩)

    本文,帮助了解响应压缩的一些知识及用法(大部分翻译于官网,英文水平有限,不准确之处,欢迎指正). 什么是响应压缩?响应压缩简单的说就是为了减少网络带宽,而把返回的响应压缩,使之体积缩小,从而加快响应的 ...