pandas速查手册(中文版)
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science
对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。
如果你想学习Pandas,建议先看两个网站。
(1)官网:Python Data Analysis Library
(2)十分钟入门Pandas:10 Minutes to pandas
在第一次学习Pandas的过程中,你会发现你需要记忆很多的函数和方法。所以在这里我们汇总一下Pandas官方文档中比较常用的函数和方法,以方便大家记忆。同时,我们提供一个PDF版本,方便大家打印。pandas-cheat-sheet.pdf
关键缩写和包导入
在这个速查手册中,我们使用如下缩写:
df:任意的Pandas DataFrame对象
同时我们需要做如下的引入:
import pandas as pd
导入数据
pd.read_csv(filename):从CSV文件导入数据
pd.read_table(filename):从限定分隔符的文本文件导入数据
pd.read_excel(filename):从Excel文件导入数据
pd.read_sql(query, connection_object):从SQL表/库导入数据
pd.read_json(json_string):从JSON格式的字符串导入数据
pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格
pd.read_clipboard():从你的粘贴板获取内容,并传给read_table()
pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据
导出数据
df.to_csv(filename):导出数据到CSV文件
df.to_excel(filename):导出数据到Excel文件
df.to_sql(table_name, connection_object):导出数据到SQL表
df.to_json(filename):以Json格式导出数据到文本文件
创建测试对象
pd.DataFrame(np.random.rand(,)):创建20行5列的随机数组成的DataFrame对象
pd.Series(my_list):从可迭代对象my_list创建一个Series对象
df.index = pd.date_range('1900/1/30', periods=df.shape[]):增加一个日期索引
查看、检查数据
df.head(n):查看DataFrame对象的前n行
df.tail(n):查看DataFrame对象的最后n行
df.shape():查看行数和列数
df.info() :查看索引、数据类型和内存信息
df.describe():查看数值型列的汇总统计
s.value_counts(dropna=False):查看Series对象的唯一值和计数
df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数
数据选取
df[col]:根据列名,并以Series的形式返回列
df[[col1, col2]]:以DataFrame形式返回多列
s.iloc[]:按位置选取数据
s.loc['index_one']:按索引选取数据
df.iloc[,:]:返回第一行
df.iloc[,]:返回第一列的第一个元素
数据清理
df.columns = ['a','b','c']:重命名列名
pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组
pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
df.dropna():删除所有包含空值的行
df.dropna(axis=):删除所有包含空值的列
df.dropna(axis=,thresh=n):删除所有小于n个非空值的行
df.fillna(x):用x替换DataFrame对象中所有的空值
s.astype(float):将Series中的数据类型更改为float类型
s.replace(,'one'):用‘one’代替所有等于1的值
s.replace([,],['one','three']):用'one'代替1,用'three'代替3
df.rename(columns=lambda x: x + ):批量更改列名
df.rename(columns={'old_name': 'new_ name'}):选择性更改列名
df.set_index('column_one'):更改索引列
df.rename(index=lambda x: x + ):批量重命名索引
数据处理:Filter、Sort和GroupBy
df[df[col] > 0.5]:选择col列的值大于0.5的行
df.sort_values(col1):按照列col1排序数据,默认升序排列
df.sort_values(col2, ascending=False):按照列col1降序排列数据
df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据
df.groupby(col):返回一个按列col进行分组的Groupby对象
df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象
df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值
df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表
df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值
data.apply(np.mean):对DataFrame中的每一列应用函数np.mean
data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max
数据合并
df1.append(df2):将df2中的行添加到df1的尾部
df.concat([df1, df2],axis=):将df2中的列添加到df1的尾部
df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join
数据统计
df.describe():查看数据值列的汇总统计
df.mean():返回所有列的均值
df.corr():返回列与列之间的相关系数
df.count():返回每一列中的非空值的个数
df.max():返回每一列的最大值
df.min():返回每一列的最小值
df.median():返回每一列的中位数
df.std():返回每一列的标准差
pandas速查手册(中文版)的更多相关文章
- Pandas速查手册中文版
本文翻译自文章: Pandas Cheat Sheet - Python for Data Science ,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非 ...
- Pandas速查手册中文版(转)
关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas as pd 导入数据 pd.read_ ...
- 三、Pandas速查手册中文版
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重 ...
- 【转】Pandas速查手册中文版
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重 ...
- Python——Pandas速查手册中文版
转自——http://blog.csdn.net/qq_33399185/article/details/60872853,非常感谢大神的整理! 还有图片版,转自——https://zhuanlan. ...
- 4、numpy+pandas速查手册
<Python数据分析常用手册>一.NumPy和Pandas篇 一.常用链接: 1.Python官网:https://www.python.org/2.各种库的whl离线安装包:http: ...
- 《zw版·Halcon-delphi系列原创教程》 zw版-Halcon常用函数Top100中文速查手册
<zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对 ...
- 25个有用的和方便的 WordPress 速查手册
如果你是 WordPress 开发人员,下载一些方便的 WordPress 备忘单可以在你需要的时候快速查找.下面这个列表,我们已经列出了25个有用的和方便的 WordPress 速查手册,赶紧收藏吧 ...
- R之data.table速查手册
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领 ...
随机推荐
- logrotate 切割日志
在工作中需要切割日志我们项目中选择的系统自带的logrotate,如需要其他需求需要自己在百度一下或者参考: https://www.cnblogs.com/kevingrace/p/6307298. ...
- docker+nginx部署静态网页(html)
我看了下网上都是部署单个.html页面的实例.所以今天试试多个.html文件的部署. 因为之前docker部署过vue.js打包的项目,所以按上次部署方式部署.结果还真行,只是这次部署的是小滴课堂上的 ...
- Java的集合类之 List 接口用法
集合其实在本质上面就是数据结构,它封装了一些底层的数据结构等操作进行操作. 集合的长度是可变的,用来存放对象的引用.常见的集合类有List集合.Set集合.Map集合. 1. List接口 List是 ...
- csp联考T1
本题主要难点在于如何处理dist^2的问题 40分算法 n^2暴力就不必多嘴,直接枚举根节点DFS就行了. 70分算法 对于b=0的情况,我们可以考虑用换根法来计算根节点的变化对总权值带来的影响. 换 ...
- Sublime Text3安装LESS
Sublime Text3安装LESS 1.Sublime Text3利用Package Control安装LESS插件.LESS2CSS插件 2.去node官网下载node.js http://no ...
- Django框架4——form表单
HTML表单一直是交互性网站的支柱,使用form组件对用户通过表单提交的数据进行访问.有效性检查以及其他处理 从Request对象中获取数据 URL相关信息 属性/方法 说明 举例 request.p ...
- day29——socket套接字(少量不全)
day29 socket套接字 socket是处于应用层与传输层之间的抽象层,他是一组操作起来非常简单的接口(接受数据)此接口接受数据之后,交由操作系统. 为什么存在socket抽象层? 如果直接与操 ...
- springboot 配置elasticsearch Java High Rest Client
前提声明 在新版本的spring boot中逐渐放弃了对Spring Data Elasticsearch的支持,所以不推荐使用,使用ES官方推出的Java High Rest Client. 引入依 ...
- ArcGIS JS 使用Proxy之 Printing Tools unable to connect to mapServer
ArcGIS JS使用Proxy.ashx将地图服务隐藏,并在微博服务器端增加了地图服务权限判断. Proxy.ashx做了如下设置, <serverUrl url="http://l ...
- 【SQL Server数据迁移】64位的机器:SQL Server中查询ORACLE的数据
从SQL Server中查询ORACLE中的数据,可以在SQL Server中创建到ORACLE的链接服务器来实现的,但是根据32位 .64位的机器和软件, 需要用不同的驱动程序来实现. 在64位的机 ...