【数学】【P5077】 Tweetuzki 爱等差数列
Description
Tweetuzki 特别喜欢等差数列。尤其是公差为 \(1\) 且全为正整数的等差数列。
显然,对于每一个数 \(s\),都能找到一个对应的公差为 \(1\) 且全为正整数的等差数列各项之和为 \(s\)。这时,Tweetuzki 想知道,满足这样条件的等差数列,最小的首项是多少。
由于 Tweetuzki 的数学非常差,尤其是因式分解,所以请你告诉他结果。
Input
输入仅包含一行一个整数 \(s\)
Output
输出一行两个用空格隔开的整数代表首项和末项
Hint
对于 \(10\%\) 的数据,\(1~\leq~s~\leq~10^6\)。
对于 \(100\%\) 的数据,\(1~\leq~s~\leq~10^{12}\)
Solution
考虑前 \(10\%\) 的点,暴力枚举首项,枚举完首项就可以 \(O(1)\) 判断是否合法了。期望得分 10 pts
考虑剩下的部分:
一个等差数列的长度只有为奇数和偶数两种可能,下面对这两种可能分类讨论:
对于长度为奇数的情况,设这个等差数列共有 \(2x~+~1\) 项,其中中项(最中间)为 \(a_k\)
因为 \(a_{k-i}~+~a_{k+i}~=~2~\times~a_k\),所以 \(\sum~a_i~=~(2x~+~1)~a_k~=~s\)
同理,对于长度为偶数的情况,设共有 \(2x\) 项,其中中间两项为 \(a_k~,~a_{k+1}\),因为公差为\(1\),所以即为 \(a_k~,~a_k~+~1\)
于是 \(\sum~a_i~=~x(a_k+a_k~+~1)~=~x~(2a_k~+~1)~=~s\)
由此我们得到了两种情况的关系式
\]
其中第一种情况长度为奇数,第二种情况长度为偶数。
注意到这两个式子都是 \(s\) 的因数分解,于是考虑直接枚举 \(x\) 的因数。
在第一种情况下,因为 \(a_k\) 是它的因数,我们考虑枚举 \(a_k\),只要枚举到第一个合法的 \(a_k\) 即可停止,
第二种情况下,因为 \(x\) 是它的因数,我们考虑枚举 \(x\),计算所有合法的 \(a_k\)
另外记得特判一个数是由自己做等差数列的情况
Code
#include <cmath>
#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#define putchar(o) \
puts("I am a cheater!")
#endif
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
ll s, ans = 1000000000000ll, ss;
int main() {
freopen("1.in", "r", stdin);
qr(s);
for (rg ll i = 2; (i * i) <= s; ++i) if(!(s % i)) { //枚举中项
ll k = s / i;
if (k & 1) {
ll x = k >> 1;
if ((i - x) > 0) {
ans = i - x;
ss = k;
break;
}
}
}
for (rg ll i = 1; (i * i) <= s; ++i) if (!(s % i)) { //枚举x
ll k = s / i;
if (k & 1) {
ll a = k >> 1;
if ((a - i) > 0) {
if (ans > a - i) ans = a - i + 1, ss = i << 1;
}
}
}
if (ans == 1000000000000ll) printf("%lld %lld\n", s, s);
else {
qw(ans, ' ', true);
qw(ans + ss - 1, '\n', true);
}
return 0;
}
【数学】【P5077】 Tweetuzki 爱等差数列的更多相关文章
- [luogu5077][Tweetuzki 爱等差数列]
题目链接 思路 数学题 首先列出等差数列求和的式子. \[S = \frac{(n + m)(n - m + 1)}{2}(n为末项,m为首项)\] \[S * 2= (n + m)(n - m + ...
- 【数学】【P5076】 Tweetuzki 爱整除
Description 对于一个数 \(k\),找到任意一个 \(x\),满足 \(0~\leq~k~\leq~x~\leq~10^{18}\) 且对于任意一个 \(x\) 进制数,把该数字各数位上的 ...
- 【DP】【P5080】 Tweetuzki 爱序列
Description Tweetuzki 有一个长度为 \(n\) 的序列 \(a_1~,~a_2~,~\dots~,a_n\). 他希望找出一个最大的 \(k\),满足在原序列中存在一些数 \(b ...
- 【贪心】【P5078】Tweetuzki 爱军训
Description Tweetuzki 所在的班级有 \(n\) 名学生,座号从 \(1\) 到 \(n\).有一次,教官命令班上的 \(n\) 名学生按照座号顺序从左到右排成一排站好军姿,其中 ...
- 洛谷 P5078 Tweetuzki 爱军训
题目连接 很明显,1e6的范围,要么nlgn要么O(n) nlgn的话可能会想到借助一些数据结构,我并没有想到这种做法 对于这种题,O(n)的做法要么是线性递推,要么就应该是贪心了 考虑这道题我们怎么 ...
- 【hash】【P5079】P5079 Tweetuzki 爱伊图
Description Input 第一行两个正整数 \(r~,~c\),表示矩阵的行数和列数. 接下来 \(r\) 行,每行输入 \(c\) 个字符,用空格隔开,保证只含有 . 和 # 两种字符.输 ...
- 「Luogu P5080 Tweetuzki 爱序列」
题目大意 给出一些数,需要求出 \(\frac{a_{i+1}}{3}=a_i\) 或 \(a_{i+1}=2 \times a_i\) 时最长的序列 \(a\). 分析 可以发现符合条件的序列 \( ...
- 【剑指offer】和为S的连续整数序列
找到所有和为S的连续整数序列,序列长度>=2 我的思路:数学法,限定首元素范围,计算序列长度. 书上解法:用small和big两个游标记录序列的开始和结束位置,调整游标. 我的解法: /* 直 ...
- Python 正则表达式 flags 参数
flags参数 re.I IGNORECASE 忽略字母大小写 re.L LOCALE 影响 “w, “W, “b, 和 “B,这取决于当前的本地化设置. re.M MULTILINE 使用本标志后, ...
随机推荐
- C#匿名参数(转载too)
匿名方法是在初始化委托时内联声明的方法. 例如下面这两个例子: 不使用匿名方法的委托: using System; using System.Collections.Generic; using Sy ...
- 在GPT格式的硬盘上,使用EFI启动的方式,安装Win7 64位系统
Win7 sp1 原装系统,用UltraISO(软碟通) 把U 盘制成Win7 安装的启动U盘 将bootmgfw.efi和shell.efi 加到已制好启动U盘的根目录,并在efi/boot/路径下 ...
- K-means + PCA + T-SNE 实现高维数据的聚类与可视化
使用matlab完成高维数据的聚类与可视化 [idx,Centers]=kmeans(qy,) [COEFF,SCORE,latent] = pca(qy); SCORE = SCORE(:,:); ...
- c++ Dynamic Memory (part 1)
1. make_shared<T>(args): return a shared_ptr dynamically allocated object of type T. Use args ...
- SVN服务器搭建及客户端配置
为什么要使用SVN? 在程序的编写过程中,每个程序员都会负责开发一个或多个模块,且开发中会生成很多不同的版本, 这就需要程序员有效的管理代码,在需要的时候可以迅速,准确取出相应的版本. Subvers ...
- UML设计(团队作业6)
决胜 Poker 一.团队成员 学号 姓名 211606392 郑俊瑜 (队长) 211606327 冉繁盛 211606323 刘世华 211606386 姚皓钰 211606358 陈卓楠 211 ...
- MOOK学习
课程选择及其理由 课程:c++程序设计 教师:魏英 学校:西北工业大学 总共:48讲 选择理由:我其实之前找了好几个,但由于小白,思考了下(迷茫,感觉好像都不错),然后看了一下大家都选择了西北工业大学 ...
- HDU 5661 Claris and XOR 贪心
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5661 bc(中文):http://bestcoder.hdu.edu.cn/contests ...
- 关《我是IT小小鸟》有感
我一直认为大学就是一个自由的舒适的学习环境,没有人可以干扰你限制你,以至于我到了大学之后只剩下了颓废的生活.每天上课玩手机,下课玩电脑,吃饭叫外卖,从不去锻炼,周末就熬夜通宵,状态越来越差,导致我逐渐 ...
- springmvc 路由
工作中MVC是较常使用的web框架,作为研发人员,也习惯了以编写Controller作为项目开始,写好了Controller和对应的方法,加上@RequestMapping注解,我们也就认为一切已经准 ...