【数学】【P5077】 Tweetuzki 爱等差数列
Description
Tweetuzki 特别喜欢等差数列。尤其是公差为 \(1\) 且全为正整数的等差数列。
显然,对于每一个数 \(s\),都能找到一个对应的公差为 \(1\) 且全为正整数的等差数列各项之和为 \(s\)。这时,Tweetuzki 想知道,满足这样条件的等差数列,最小的首项是多少。
由于 Tweetuzki 的数学非常差,尤其是因式分解,所以请你告诉他结果。
Input
输入仅包含一行一个整数 \(s\)
Output
输出一行两个用空格隔开的整数代表首项和末项
Hint
对于 \(10\%\) 的数据,\(1~\leq~s~\leq~10^6\)。
对于 \(100\%\) 的数据,\(1~\leq~s~\leq~10^{12}\)
Solution
考虑前 \(10\%\) 的点,暴力枚举首项,枚举完首项就可以 \(O(1)\) 判断是否合法了。期望得分 10 pts
考虑剩下的部分:
一个等差数列的长度只有为奇数和偶数两种可能,下面对这两种可能分类讨论:
对于长度为奇数的情况,设这个等差数列共有 \(2x~+~1\) 项,其中中项(最中间)为 \(a_k\)
因为 \(a_{k-i}~+~a_{k+i}~=~2~\times~a_k\),所以 \(\sum~a_i~=~(2x~+~1)~a_k~=~s\)
同理,对于长度为偶数的情况,设共有 \(2x\) 项,其中中间两项为 \(a_k~,~a_{k+1}\),因为公差为\(1\),所以即为 \(a_k~,~a_k~+~1\)
于是 \(\sum~a_i~=~x(a_k+a_k~+~1)~=~x~(2a_k~+~1)~=~s\)
由此我们得到了两种情况的关系式
\]
其中第一种情况长度为奇数,第二种情况长度为偶数。
注意到这两个式子都是 \(s\) 的因数分解,于是考虑直接枚举 \(x\) 的因数。
在第一种情况下,因为 \(a_k\) 是它的因数,我们考虑枚举 \(a_k\),只要枚举到第一个合法的 \(a_k\) 即可停止,
第二种情况下,因为 \(x\) 是它的因数,我们考虑枚举 \(x\),计算所有合法的 \(a_k\)
另外记得特判一个数是由自己做等差数列的情况
Code
#include <cmath>
#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#define putchar(o) \
puts("I am a cheater!")
#endif
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
ll s, ans = 1000000000000ll, ss;
int main() {
freopen("1.in", "r", stdin);
qr(s);
for (rg ll i = 2; (i * i) <= s; ++i) if(!(s % i)) { //枚举中项
ll k = s / i;
if (k & 1) {
ll x = k >> 1;
if ((i - x) > 0) {
ans = i - x;
ss = k;
break;
}
}
}
for (rg ll i = 1; (i * i) <= s; ++i) if (!(s % i)) { //枚举x
ll k = s / i;
if (k & 1) {
ll a = k >> 1;
if ((a - i) > 0) {
if (ans > a - i) ans = a - i + 1, ss = i << 1;
}
}
}
if (ans == 1000000000000ll) printf("%lld %lld\n", s, s);
else {
qw(ans, ' ', true);
qw(ans + ss - 1, '\n', true);
}
return 0;
}
【数学】【P5077】 Tweetuzki 爱等差数列的更多相关文章
- [luogu5077][Tweetuzki 爱等差数列]
题目链接 思路 数学题 首先列出等差数列求和的式子. \[S = \frac{(n + m)(n - m + 1)}{2}(n为末项,m为首项)\] \[S * 2= (n + m)(n - m + ...
- 【数学】【P5076】 Tweetuzki 爱整除
Description 对于一个数 \(k\),找到任意一个 \(x\),满足 \(0~\leq~k~\leq~x~\leq~10^{18}\) 且对于任意一个 \(x\) 进制数,把该数字各数位上的 ...
- 【DP】【P5080】 Tweetuzki 爱序列
Description Tweetuzki 有一个长度为 \(n\) 的序列 \(a_1~,~a_2~,~\dots~,a_n\). 他希望找出一个最大的 \(k\),满足在原序列中存在一些数 \(b ...
- 【贪心】【P5078】Tweetuzki 爱军训
Description Tweetuzki 所在的班级有 \(n\) 名学生,座号从 \(1\) 到 \(n\).有一次,教官命令班上的 \(n\) 名学生按照座号顺序从左到右排成一排站好军姿,其中 ...
- 洛谷 P5078 Tweetuzki 爱军训
题目连接 很明显,1e6的范围,要么nlgn要么O(n) nlgn的话可能会想到借助一些数据结构,我并没有想到这种做法 对于这种题,O(n)的做法要么是线性递推,要么就应该是贪心了 考虑这道题我们怎么 ...
- 【hash】【P5079】P5079 Tweetuzki 爱伊图
Description Input 第一行两个正整数 \(r~,~c\),表示矩阵的行数和列数. 接下来 \(r\) 行,每行输入 \(c\) 个字符,用空格隔开,保证只含有 . 和 # 两种字符.输 ...
- 「Luogu P5080 Tweetuzki 爱序列」
题目大意 给出一些数,需要求出 \(\frac{a_{i+1}}{3}=a_i\) 或 \(a_{i+1}=2 \times a_i\) 时最长的序列 \(a\). 分析 可以发现符合条件的序列 \( ...
- 【剑指offer】和为S的连续整数序列
找到所有和为S的连续整数序列,序列长度>=2 我的思路:数学法,限定首元素范围,计算序列长度. 书上解法:用small和big两个游标记录序列的开始和结束位置,调整游标. 我的解法: /* 直 ...
- Python 正则表达式 flags 参数
flags参数 re.I IGNORECASE 忽略字母大小写 re.L LOCALE 影响 “w, “W, “b, 和 “B,这取决于当前的本地化设置. re.M MULTILINE 使用本标志后, ...
随机推荐
- Linux☞如何修改文件权限
修改文件/目录的权限:chmod 规则 文件/目录名 规则: 角色:u 自己人 user g 同组人 group o 其他人 other a 所有人 all 操作: + - 权限 ...
- 基于日志报警插件 elastalert 实现告警
1.官方http://elastalert.readthedocs.io/en/latest/ 2.报警规则示例 http://elastalert.readthedocs.io/en/latest/ ...
- echarts.js使用心得--demo
首先要感谢一下我的公司,因为公司需求上面的新颖(奇葩)的需求,让我有幸可以学习到一些好玩有趣的前端技术. 废话不多时 , 直接开始. 第一步: 导入echarts.js文件 下载地址:http://e ...
- 微软职位内部推荐-Senior Software Engineer II-Sharepoint
微软近期Open的职位: SharePoint is a multi-billion dollar enterprise business that has grown from an on-prem ...
- 第九次ScrumMeeting博客
第九次ScrumMeeting博客 本次会议于11月4日(六)22时整在3公寓725房间召开,持续20分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕.方科栋. 1. 每个人的工作(有Issue的 ...
- ntp时钟服务器配置
集群中时间不同步有可能会让大数据的应用程序运行混乱,造成不可预知的问题,比如Hbase,当时间差别过大时就会挂掉,所以在大数据集群中,ntp服务,应该作为一种基础的服务,以下在演示在CentOS 7. ...
- Linux学习——操作文件与目录
1. ls:列出文件及目录信息. 命令格式:ls [选项] ... 常用选项: -a 显示指定目录下所有子目录与文件,包括隐藏文件. -A 显示指定目录下所有子目录与文件,包括隐藏文件.但不列出“.” ...
- Beta冲刺贡献分数分配结果
小组名称:Hello World! 项目名称:空天猎 组长:陈建宇 成员:刘成志.刘耀泽.刘淑霞.黄泽宇.方铭.贾男男 第三周贡献分分配结果 基础分 会议分 个人贡献分 最终分数 黄泽宇 9 0.5 ...
- HDU 2012 FZU 1756关于素数的一些水题
HDU 2012 素数判定 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- lintcode-421-简化路径
421-简化路径 给定一个文档(Unix-style)的完全路径,请进行路径简化. 样例 "/home/", => "/home" "/a/./ ...