解题:POI 2009 TAB
这也算是个套路题(算吗)?发现换来换去每行每列数的组成是不变的,那么就把每行每列拎出来哈希一下,复杂度$O(Tn^2log$ $n)$有点卡时=。=。
然而正解似乎不需要哈希,就像这样↓
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
int xxx=read();
x[xxx+A]=i;
y[xxx+A]=j;
}
bool b=true;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
a[i][j]=read();
if(x[a[i][j]+A]!=x[a[i][]+A]||x[a[i][j]+A]==)b=false;
if(y[a[i][j]+A]!=y[a[][j]+A]||y[a[i][j]+A]==)b=false;
}
}
(来自洛谷题解,侵删)
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ull unsigned long long
using namespace std;
const int N=,P=1e6;
const long long bas=;
ull tmp[N],hsh[][*N];
int mapp[N][N],n,m,T;
int main ()
{
register int i,j,k;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
memset(hsh,,sizeof hsh);
for(k=;k<=;k++)
{
for(i=;i<=n;i++)
for(j=;j<=m;j++)
scanf("%d",&mapp[i][j]),mapp[i][j]+=P;
for(i=;i<=n;i++)
{
for(j=;j<=m;j++)
tmp[j]=mapp[i][j];
sort(tmp+,tmp++m);
for(j=;j<=m;j++)
hsh[k][i]=hsh[k][i]*bas+tmp[j];
}
for(i=;i<=m;i++)
{
for(j=;j<=n;j++)
tmp[j]=mapp[j][i];
sort(tmp+,tmp++n);
for(j=;j<=n;j++)
hsh[k][i+n]=hsh[k][i+n]*bas+tmp[j];
}
}
sort(hsh[]+,hsh[]++n+m);
sort(hsh[]+,hsh[]++n+m);
bool f=true;
for(i=;i<=n+m&&f;i++)
if(hsh[][i]!=hsh[][i]) f=false;
f?printf("TAK\n"):printf("NIE\n");
}
return ;
}
解题:POI 2009 TAB的更多相关文章
- 解题:POI 2009 Fire Extinguishers
题面 洛谷数据非常水,建议去bzoj 我第一眼一看这不是那个POI2011的升级版吗(明明这个是2009年的,应该说那个是这个的弱化版,果然思想差不多. 因为$k$很小,可以考虑每个间隔距离来转移.我 ...
- 解题:POI 2009 Ticket Inspector
题面 看起来很水,然而不会DP的蒟蒻并不会做,PoPoqqq orz 设$f[i][j]$表示当前在第$i$个点和第$i+1$个点之间查票,已经查了$j$次的最大收益.然后就是那种很常见的枚举前一个结 ...
- 解题:POI 2009 Lyz
题面 板板讲的霍尔定理 霍尔定理:一张二分图有完全匹配的充要条件是对于任$i$个左部点都有至少$i$个右部点与它们相邻.放在这个题里就是说显然最容易使得鞋不够的情况是一段连续的人,那就维护一下最大子段 ...
- [POI 2009]Lyz
Description 题库链接 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋.有 \(m\ ...
- 【BZOJ 1115】【POI 2009】石子游戏Kam
http://www.lydsy.com/JudgeOnline/problem.php?id=1115 差分后变成阶梯博弈. #include<cstdio> #include<c ...
- 【Nim 游戏】 学习笔记
前言 没脑子选手随便一道博弈论都不会 -- 正文 Nim 游戏引入 这里给出最简单的 \(Nim\) 游戏的题目描述: \(Nim\) 游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\ ...
- 解题:POI 2016 Nim z utrudnieniem
题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...
- 解题:NOI 2009 诗人小G
题面 今天考试考了,于是开始糊学决策单调性DP 这是一个完全不会优化DP的人 决策单调性DP的一种优化方法是用单调队列优化 存下{左端点l,右端点r,最优决策点p}的三元组,按照单调队列的通常操作来说 ...
- 解题:NOI 2009 管道取珠
题面 考虑这个平方的实际意义,实际是说取两次取出一样的序列 那么设$dp[i][j][k][h]$表示第一次在上面取$i$个下面取$j$个,第二次在上面取$k$个下面取$h$个的方案数 等等$n^4$ ...
随机推荐
- info信息的获取
一.绝对路径(_SERVER[“SCRIPT_FILENAME”])这个是最常用,也是最有效的一个办法,找到phpinfo()页面可以直接找到网站的绝对路径,对于写shell和信息搜集是必不可少的.二 ...
- 《Node.js核心技术教程》学习笔记
<Node.js核心技术教程>TOC \o "1-3" \h \z \u 1.章模块化编程 2019.2.19 13:30' PAGEREF _101 \h 1 08D ...
- HDU-1864:最大报销额(浮点数01背包)
链接:HDU-4055:最大报销额 题意:现有一笔经费可以报销一定额度的发票.允许报销的发票类型包括买图书(A类).文具(B类).差旅(C类),要求每张发票的总额不得超过1000元,每张发票上,单类物 ...
- join 中的on和where的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表, 然后再将这张临时表返回给用户. 在使用left jion时,on和where条件的区别如下: 1.on条件是在生成临时表时使用的条 ...
- spring mvc 详细配置
转自: http://www.cnblogs.com/superjt/p/3309255.html 现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是 ...
- Bracket Sequences Concatenation Problem括号序列拼接问题(栈+map+思维)
A bracket(括号) sequence is a string containing only characters "(" and ")".A regu ...
- 1014-C程序的语法树
- 互评Alpha版本——基于spec评论作品
组名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙赛佳 田良 于洋 刘欣 段晓睿 一.二次元梦之队----I DO 在测评该项目时,我们组索要了该组的apk程序,安装之后我就开 ...
- Java 学习笔记 ------第六章 继承与多态
本章学习目标: 了解继承的目的 了解继承与多态的关系 知道如何重新定义方法 认识java.lang.object 简介垃圾回收机制 一.继承 继承是java面向对象编程技术的一块基石,因为它允许创建分 ...
- 2018软工实践—Alpha冲刺(7)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 学习MSI.CUDA 试运行软件并调试 ...