BZOJ5315 [JSOI2018]防御网络 【仙人掌 + dp】
题目链接
题解
题目好吓人= =点仙人掌 + 斯坦纳树
我们只需求出对于所有选点的方案的斯坦纳树边长总和
\(n\)那么大当然不能状压,但是考虑一下如果这是一棵树,一个方案的贡献就是连接这些点的所有边
我们可以考虑计算每条边的贡献
一条边在树上有贡献,当且仅当它两端的树都存在被选择的点
那么这条边\((u,v)\)贡献就是
\]
其中\(siz[u]\)表示断开这条边后\(u\)一侧的树大小
如果放到仙人掌上呢?
对于割边,和树是一样的
我们只需计算每个环的贡献
考虑我们对于一个环,选择了其中\(K\)个点所在外向树,那么就有连接\(K\)个点的环上的\(K\)段边,我们一定是除去最长那一条
所以我们断环为链,设\(f[i][j][k]\)为选择了区间\([i,j]\)的外向树【意味着端点必选,中间不一定选,区间外一定不选】,\([i,j]\)中最大距离为\(k\)的方案数
那么有,即考虑最后一段的长度
\]
直接转移是\(O(n^4)\)的,常数很小数据很水可以跑过。。。
当然可以前缀和优化成\(O(n^3)\)
【其实是我前缀和写炸了,直接交一波暴力转移竟然\(A\)了。。。】
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 205,maxm = 100005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
}
int n,m;
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
int dfn[maxn],low[maxn],siz[maxn],fa[maxn],cnt,sum;
int v[maxn],K;
LL f[maxn][maxn][maxn],D[maxn][maxn][maxn],S[maxn][maxn][maxn],ans,bin[maxn];
void DP(int rt,int u){
K = 0; int tot = 0;
for (int i = u; i != rt; i = fa[i]){
v[++K] = siz[i];
siz[rt] += siz[i];
tot += siz[i];
}
v[++K] = sum - tot;
cls(f);
for (int l = 1; l <= K; l++)
for (int r = l; r <= K; r++)
for (int k = 0; k <= r - l; k++){
if (l == r){
if (k == 0) f[l][r][k] = bin[v[l]] - 1;
continue;
}
int d = 0,s = 0;
for (int i = 0; i <= k; i++) d = (d + f[l][r - k][i]) % P;
for (int i = r - k + 1; i < r; i++) s = (s + f[l][i][k]) % P;
f[l][r][k] = (bin[v[r]] - 1) * (d + s) % P;
ans = (ans + 1ll * (K - max(K - r + l,k)) * f[l][r][k] % P) % P;
}
}
void dfs(int u){
dfn[u] = low[u] = ++cnt; siz[u] = 1;
Redge(u) if ((to = ed[k].to) != fa[u]){
if (!dfn[to]){
fa[to] = u; dfs(to);
low[u] = min(low[u],low[to]);
}
else low[u] = min(low[u],dfn[to]);
if (low[to] > dfn[u]){
ans = (ans + 1ll * (bin[siz[to]] - 1) * (bin[sum - siz[to]] - 1) % P) % P;
siz[u] += siz[to];
}
}
Redge(u) if (fa[to = ed[k].to] != u && dfn[u] < dfn[to])
DP(u,to);
}
int main(){
bin[0] = 1; for (int i = 1; i <= 200; i++) bin[i] = bin[i - 1] * 2ll % P;
n = read(); m = read();
while (m--) build(read(),read());
sum = n; dfs(1);
ans = ans * qpow(bin[n],P - 2) % P;
printf("%lld\n",ans);
return 0;
}
BZOJ5315 [JSOI2018]防御网络 【仙人掌 + dp】的更多相关文章
- bzoj5315/luoguP4517 [JSOI2018]防御网络(仙人掌,dp)
bzoj5315/luoguP4517 防御网络(仙人掌,dp) bzoj Luogu 题目描述略(太长了) 题解时间 本题和斯坦纳树无关. 题面保证了是一个仙人掌...? 但这个环之间甚至交点都没有 ...
- 洛谷P4517 [JSOI2018]防御网络(dp)
题面 传送门 题解 翻译一下题意就是每次选出一些点,要用最少的边把这些点连起来,求期望边数 我也不知道为什么反正总之就是暴力枚举太麻烦了所以我们考虑贡献 如果一条边是割边,那么它会在图里当且仅当两边的 ...
- 【BZOJ5315】[JSOI2018]防御网络(动态规划,仙人掌)
[BZOJ5315][JSOI2018]防御网络(动态规划,仙人掌) 题面 BZOJ 洛谷 题解 显然图是仙人掌. 题目给了斯坦纳树就肯定不是斯坦纳树了,,,, 总不可能真让你\(2^n\)枚举点集再 ...
- bzoj 5315: [Jsoi2018]防御网络
Description Solution 考虑每一条边的贡献 对于树边,如果两边各存在一个点,那么有贡献,总贡献就是 \((2^{size}-1)*(2^{n-size}-1)\) 分别对应两边的 \ ...
- 【BZOJ-1952】城市规划 [坑题] 仙人掌DP + 最大点权独立集(改)
1952: [Sdoi2010]城市规划 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 73 Solved: 23[Submit][Status][ ...
- 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 57 Solved: 41[Submit][Status][Discuss] ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3467 Solved: 1438[Submit][Status][Discuss] Descripti ...
- 【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)
题目: BZOJ1487 分析: 题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下: 先考虑单独一个岛的情况.第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 ...
- bzoj4316小C的独立集(dfs树/仙人掌+DP)
本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环( ...
随机推荐
- My status
I haven‘t any one who is strong relationship with me. My skill is normal. I'm not interesting in neg ...
- 集群服务器、负载均衡和session共享,C#的static变量
集群服务器:是指由两台以上服务器共同组成的服务器,目的是为了提高性能. 负载均衡:是基于集群服务器实现的,作用是当A服务器访问数达到一定上限时,接下来客户端的请求会自动分配给B服务器,目的是减少服务器 ...
- 车架号识别,VIN码识别 助力汽车后市场
又有一家汽配圈新贵引入了小译家的 车架号识别(VIN码识别)技术 那就是明觉科技 是一个服务于汽车后市场 集数据服务.行业数据挖掘 及“互联网+”为一体的汽配信息协作平台 旗下拥有一款全车零配件信息智 ...
- HttpRunner安装笔记(1)安装环境准备:pyenv安装
HttpRunner建议在Python 3.4 及以上版本,但是centos有其他功能模块基于python2.7,所以使用pyenv安装多版本pyhon版本. pyenv 是一款特别好用的Python ...
- 理解学习Springboot(一)
Springboot有何优势呢,网上一大推,这里就不写了. 一.配置maven 1.在maven官网下载maven,http://maven.apache.org/download.cgi 2.将下载 ...
- Windows下Mongo分片及集群
这里简单介绍一下windows下mongodb的分片设置和集群搭建,希望能够为迷茫的新手起到一点点作用.其实windows下与linux下思路是一致的,只是绑定时的ip,与端口号不同,linux下可以 ...
- asp.net mvc access数据库操作
连接access数据库其实也简单,只要按照mvc的模式来就可以,遵循c v约定就可以 既然渲染试图是强类型,那么取得的数据就转换成强类型,其他一切和asp.net操作一样 DB mydb = new ...
- JS - Promise使用详解--摘抄笔记
第一部分: JS - Promise使用详解1(基本概念.使用优点) 一.promises相关概念 promises 的概念是由 CommonJS 小组的成员在 Promises/A 规范中提出来的. ...
- python format用法详解
#常用方法:print('{0},{1}'.format('zhangk', 32)) print('{},{},{}'.format('zhangk','boy',32)) print('{name ...
- 如何理解IPD+CMMI+Scrum一体化研发管理解决方案之CMMI篇
如何快速响应市场的变化,如何推出更有竞争力的产品,如何在竞争中脱颖而出,是国内研发企业普遍面临的核心问题,为了解决这些问题,越来越多的企业开始重视创新与研发管理,加强研发过程的规范化,集成产品开发(I ...