BZOJ 1853 幸运数字(容斥原理+dfs)
题意:求闭区间内能被6和8组成的数字整除的数目。n<=1e11.
我们可以预处理出这些6和8组成的数字,大概2500个,然后排除一些如88,66的情况。这样大概还剩下1000个。
转化为[0,r]和[0,l-1]的问题,显然需要运用容斥原理。ans=n/6+n/8+n/68+...+...-n/lcm(6,8)-n/lcm(6,68)......
因此用dfs即可计算出来,这样一看复杂度好像是2^1000的样子,但是注意到lcm增长的很快,如果lcm>n那么显然之后的这些情况就可以忽略了。
这就是一个强有力的剪枝。
另外从大到小dfs要比从小到大dfs要好。大概常数小?
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL num[], pos1, pos2, p[], mark[];
void init(){
p[]=; FOR(i,,) p[i]=p[i-]*;
int l=, r=, tmpl, tmpr;
num[++pos1]=; num[++pos1]=;
FOR(i,,) {
tmpl=r+;
FOR(j,l,r) num[++pos1]=*p[i-]+num[j];
FOR(j,l,r) num[++pos1]=*p[i-]+num[j];
tmpr=pos1;
l=tmpl; r=tmpr;
}
FOR(i,,pos1) {
int flag=true;
FO(j,,i) if (num[i]%num[j]==) {flag=false; break;}
if (flag) mark[++pos2]=num[i];
}
mark[++pos2]=1e16;
}
LL dfs(int pos, int flag, LL x, LL cheng){
if (pos<=) return ;
LL res=;
res+=dfs(pos-,flag,x,cheng);
LL tmp=__gcd(cheng,mark[pos]);
if (cheng/tmp<=(double)x/mark[pos]) {
LL tt=cheng/tmp*mark[pos];
res+=dfs(pos-,flag^,x,tt);
res+=(flag?x/tt:-x/tt);
}
return res;
}
LL sol(LL x){
for (int i=pos2; i>=; --i) if (mark[i]<=x) return dfs(i,,x,);
return ;
}
int main ()
{
init();
LL a, b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",sol(b)-sol(a-));
return ;
}
BZOJ 1853 幸运数字(容斥原理+dfs)的更多相关文章
- [SCOI2010]幸运数字 [容斥原理 dfs]
题意:"幸运号码"是十进制表示中只包含数字6和8的那些号码,求\([l,r]:r \le 10^10\)之间"幸运号码"的倍数个数 发现幸运号码貌似很少唉,去掉 ...
- BZOJ 1853 幸运数字
需要优化一波常数. 以及刚才那个版本是错的. #include<iostream> #include<cstdio> #include<cstring> #incl ...
- Bzoj 1853: [Scoi2010]幸运数字 容斥原理,深搜
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 1774 Solved: 644[Submit][Status] ...
- 1853: [Scoi2010]幸运数字[容斥原理]
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 2405 Solved: 887[Submit][Status] ...
- BZOJ 4568 幸运数字
题目传送门 4568: [Scoi2016]幸运数字 Time Limit: 60 Sec Memory Limit: 256 MB Description A 国共有 n 座城市,这些城市由 n-1 ...
- BZOJ1853 [Scoi2010]幸运数字 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1853 题意概括 求一个区间范围内,近似幸运数字的个数. 定义: 幸运数字:仅由6或者8组成的数字. ...
- 【BZOJ1853】[Scoi2010]幸运数字 容斥原理+搜索
Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,88 ...
- [luogu2576 SCOI2010] 幸运数字 (容斥原理)
传送门 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,66 ...
- bzoj1853幸运数字——容斥原理
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1853 dfs实现容斥原理即可. 注意:若在init中写“cnt++”,则出来后需要先cnt-- ...
随机推荐
- 20155332 2016-2017-2 《Java程序设计》实验一 Java开发环境的熟悉
实验内容 使用JDK编译.运行简单的Java程序: 使用IDEA 编辑.编译.运行.调试Java程序. 实验知识点 JVM.JRE.JDK的安装位置与区别: 命令行运行javac:java:javac ...
- 【LG3320】[SDOI2015]寻宝游戏
[LG3320][SDOI2015]寻宝游戏 题面 洛谷 题解 不需要建虚树的虚树2333... 贪心地想一下,起始节点肯定是在关键点上,访问顺序就是\(dfs\)序. 那么对于每次询问, \[ An ...
- spring源码-aop源码-5.1
一.aop的源码部分还是有点复杂的,但是为了更好的理解,我这里会省去很多不必要的逻辑实现过程.主要方向还是更好的理解整体代码的实现过程. 二.说明重点:aop的过程主要过程有两点:第一点,发现正确和适 ...
- SQL查找重复项目
1 2 3 4 5 6 7 SELECT t1.* FROM t1, (SELECT name,ADD FROM t1 GROUP BY name,ADD HAVING COUNT(1 ...
- Migrating to WebSphere 9
Migrating to WebSphere 9 Make a migration plan Requirements Migrate WebSphere profiles into the new ...
- throttle(节流)和debounce(防抖)
防抖和节流都是用来控制频繁调用的问题,但是这两种的应用场景是有区别的. throttle(节流) 有一个调用周期,在一个很长的时间里分为多段,每一段执行一次.例如onscroll,resize,500 ...
- 【数据结构系列】线段树(Segment Tree)
一.线段树的定义 线段树,又名区间树,是一种二叉搜索树. 那么问题来了,啥是二叉搜索树呢? 对于一棵二叉树,若满足: ①它的左子树不空,则左子树上所有结点的值均小于它的根结点的值 ②若它的右子树不空, ...
- 梯度消失&&梯度爆炸
转载自: https://blog.csdn.net/qq_25737169/article/details/78847691 前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案. ...
- java不用任何已有方法完全自写的去重法
package aa; class InsertSort{ private long[] a; private int nElems; //构造方法 public InsertSort(int max ...
- Java 学习笔记 ------第二章 从JDK到IDE
本章学习目标: 了解与设定PATH 了解与指定CLASSPATH 了解与指定SOURCEPATH 使用package与import管理类别 初步认识JDK与IDE的对应关系 一.第一个Java程序 工 ...