【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学
题目描述
两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过1(即尽量均分)。求先手和后手谁必胜。
输入
输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。
接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。
输出
输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。
样例输入
4 3
1 1
1 2
1 3
1 5
样例输出
0 0 1 1
题解
博弈论+SG定理+数学
显然游戏为多状态组合游戏,考虑使用SG定理求解。
SG定理:定义每种局面的SG函数值为该局面所有子局面SG函数值的mex,多状态组合游戏的SG值为每个状态SG值的异或。SG值为0时先手必败,否则先手必胜。
设 $f[i]$ 表示一堆 $i$ 个石子的SG函数值,当 $i<f$ 时 $f[i]=0$ 。枚举分成的堆数 $j$ ,根据定义有 $f[i]=\text{mex}_{j=2}^{i}f[\frac ij]\text{^}f[\frac ij]\text{^}...\text{^}f[\frac ij]\text{^}f[\frac ij+1]\text{^}f[\frac ij+1]\text{^}...\text{^}f[\frac ij+1]$ 。
其中 $\text{^}$ 表示异或,$f[\frac ij]$ 有 $j-i\%j$ 个,$f[\frac ij+1]$ 有 $i\%j$ 个,$\%$ 表示模。
这里出现了 $\frac ij$ ,可以使用数学下底分块的方法枚举商,求出 $\frac ij$ 相等的一段区间。
由于 $x\text{^}x=0$ ,因此只需要考虑 $j-i\%j$ 和 $i\%j$ 的奇偶性即可。
又因为 $i\%j=i-j·\frac ij$ ,因此当 $\frac ij$ 为定值时,相同奇偶性的 $j$ 对应的答案相同。
具体来讲 ,$\text{mex}$ 后面的部分当 $j$ 为偶数时:$i$ 为奇数时为 $f[\frac ij]\text{^}f[\frac ij+1]$ ,否则为 $0$ ;当 $j$ 为奇数时:$i-j$ 为奇数为 $f[\frac ij+1]$ ,否则为 $f[\frac ij]$ 。
之后暴力求 $\text{mex}$ 即可(复杂度是对的)。
最后对于询问,将每堆的SG值异或即可得到最终的SG值。
时间复杂度 $O(n\sqrt n)$ 。
bzoj上比较卡常,需要使用时间戳优化来记录每个SG是否作为子状态出现。
#include <cstdio>
#include <algorithm>
using namespace std;
int f[100010] , v[100010];
inline void calc(int n , int c)
{
int i , t , last;
for(i = 2 ; i <= n ; i = last + 1)
{
t = n / i , last = n / t;
if(last / 2 > (i - 1) / 2)
{
if(n & 1) v[f[t] ^ f[t + 1]] = c;
else v[0] = c;
}
if((last + 1) / 2 > i / 2)
{
if((n - t) & 1) v[f[t + 1]] = c;
else v[f[t]] = c;
}
}
}
int main()
{
int T , c , i , n , x , val;
scanf("%d%d" , &T , &c);
for(i = c ; i < 100000 ; i ++ )
{
calc(i , i);
while(v[f[i]] == i) f[i] ++ ;
}
while(T -- )
{
scanf("%d" , &n) , val = 0;
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , val ^= f[x];
printf("%d" , (bool)val);
if(T) printf(" ");
}
return 0;
}
【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学的更多相关文章
- bzoj3576: [Hnoi2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- [HNOI2014]江南乐 博弈论
题面 题面 题解 首先我们知道一个关于除法的重要性质:对于一个固定的\(i\),表达式\(\frac{i}{m}\)的取值只有根号个. 因此我们考虑如何优化SG函数的求解. 观察到在取值相同的同一段中 ...
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
- 【BZOJ3576】江南乐(博弈论)
[BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...
- 洛谷 P3235 [HNOI2014]江南乐 解题报告
P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...
- 【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
- luogu P3235 [HNOI2014]江南乐
传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...
- P3235 [HNOI2014]江南乐
$ \color{#0066ff}{ 题目描述 }$ 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的 ...
- 【bzoj3576】 Hnoi2014—江南乐
http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...
随机推荐
- odoo学习之:【转】控制menuitem的显示权限
作者原文:https://blog.csdn.net/wangnan537/article/details/43992771 在实际应用Odoo(OpenERP)的过程中, 会有对某用户组隐藏菜单的需 ...
- Linux下MySql变量修改遇到的问题记录
一.问题记录: 项目上需要使用mysql的过程来自动化构建一批数据,但是调用的时候总是报找不到表或者过程 二.排查过程: (1)首先终端连接mysql后发现,无论表还是过程在数据库中都是存在的,排除了 ...
- python 逆波兰式
逆波兰式,也叫后缀表达式 技巧:为简化代码,引入一个不存在的运算符#,优先级最低.置于堆栈底部 class Stack(object): '''堆栈''' def __init__(self): se ...
- springboot对security的后端配置
一.Spring Security是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架.它提供了一组可以在Spring应用上下文中配置的Bean,充分利用了Spring ...
- 利用Anaconda进行python爬虫环境的配置-安装scrapy
1.下载Anaconda,下载地址:https://www.continuum.io/downloads 2.安装anaconda. 3.安装scrapy
- 【JUC源码解析】LinkedBlockingQueue
简介 一个基于链表的阻塞队列,FIFO的顺序,head指向的元素等待时间最长,tail指向的元素等待时间最短,新元素从队列尾部添加,检索元素从队列头部开始,队列的容量,默认是Integer#MAX_V ...
- 向日期添加指定的时间间隔(mysql)
DATE_ADD( 原始日期, INTERVAL 要加的年数 YEAR) DATE_ADD( 原始日期, INTERVAL 要加的月份 MONTH) DATE_ADD( 原始日期, INTERVAL ...
- FTP如何通过Windows防火墙
将C:\Windows\SysWOW64\ftp.exe(64位系统)C:\Windows\system32\ftp.exe(32位系统)文件添加到防火墙的允许列表中即可. 注:“控制面板” -> ...
- jvm之对象创建过程
常量池中定位类的符号引用 ↓ 检查符号引用所代表的类是否已被加载,解析和初始化过 → ↓ ...
- InTelliJ 字体调整
Java IDE 工具InTelliJ 调整字体大小 1.File -> Settings 2.左上的搜索框中输入 font. 等待自动查找结果. 3.修改size 大小