题目传送门

这道题可以很快想到暴力DP的做法:

f[i]=min(f[i],f[j]+(C[i]-C[j]+i-j--L)^);

但是数据范围有50000,这就需要用斜率优化了。

我们设S[i]=C[i]+i(C[i]为前缀和),L++,设j为i的最优决策点。。

原方程就变为:

f[i]=f[j]+(S[i]-(S[j]-L))^;
f[i]=f[j]+S[i]^2+(S[j]-L)^2-2*S[i]*(S[j]-L);
f[j]+S[i]^2+(S[j]-L)^2=2*S[i]*(S[j]-L)+f[i];
y = k x + b

我们设2*S[i]为k。

相当于这题就变成了求最小的截距f[i]。

假设A,B,C,D为四个决策点。

因为AB的斜率小于f的斜率(2*S[i]),所以它对当前状态的转移一定是没用的。

因为如果要进过A点转移,需要将f"抬高"很多,会大大增大它的截距(f[i])。

所以斜率小于f(当前点)都可以排除。

所以B为最优决策点。

通过B点转移后,如图:

而对于这个New点,它对于之后的点,比D点更优,因为在之后转移时,CNew比CD的斜率更小,所得截距也最小。(由于f的斜率是单调递增的)

这个在凸包上的操作通过单调队列实现。

code:

#include <cstdio>
using namespace std; int read()
{
char c;while(c=getchar(),c<''||c>'');
int x=c-'';while(c=getchar(),c>=''&&c<='')x=x*+c-'';
return x;
} typedef long long LL;
LL N,L,f[],a[];
LL sum[],S[];
LL l[],h,t; double X(int x){return S[x];}
double Y(int y){return f[y]+(S[y]+L-)*(S[y]+L-);}
double get(int x,int y){
return (Y(y)-Y(x))/(X(y)-X(x));
} int main()
{
N=read(),L=read();L++;
register int i;
for(i=;i<=N;i++)a[i]=read();
for(i=;i<=N;i++){
sum[i]=sum[i-]+a[i];
S[i]=sum[i]+i;
}
h=t=;
for(i=;i<=N;i++){
while(h<t&&get(l[h],l[h+])<*S[i])h++;
f[i]=f[l[h]]+(S[i]-S[l[h]]-L)*(S[i]-S[l[h]]-L);
while(h<t&&get(l[t-],l[t])>get(l[t],i))t--;
l[++t]=i;
}
printf("%lld",f[N]);
return ;
}

BZOJ1010_玩具装箱toy_KEY的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  3. C++之路进阶——codevs1319(玩具装箱)

    1319 玩具装箱  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是 ...

  4. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  5. 【BZOJ】【1010】【HNOI2008】玩具装箱Toy

    DP/斜率优化 根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$ 其中 $$s[i]=\sum_{k=1}^{i} c[k] ...

  6. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  7. 【斜率DP】BZOJ 1010:玩具装箱

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7537  Solved: 2888[Submit][St ...

  8. BZOJ_1010_[HNOI2008]_玩具装箱toy_(斜率优化动态规划+单调队列)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 给出\(n\)和\(l\).有\(n\)个玩具,第\(i\)个玩具的长度是\(c[i]\ ...

  9. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

随机推荐

  1. BZOJ3174:[TJOI2013]拯救小矮人(DP)

    Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人, ...

  2. 35、springboot-运行状态监控使用Actuator

    Spring Boot Actuator 提供了运行状态监控的功能 Actuator 监控数据可以通过阻REST远程 shell 和JMX方式获得.我 首先来介绍通过 REST 方式查看 Actuat ...

  3. 在 S5PV210 的 开发板上 点亮 一个 LED 灯

    参考学习教程:周立功嵌入式Linux开发教程-(上册) 材料:首先 准备一个 安装好 Linux 的 开发板 使用  xshell 工具 连接 开发板  ,winscp 工具 连接 开发板  ,  准 ...

  4. Gradle Goodness: Parse Files with SimpleTemplateEngine in Copy Task

    With the copy task of Gradle we can copy files that are parsed by Groovy's SimpleTemplateEngine. Thi ...

  5. spring boot 输入参数统一校验

    1 引入spring boot validate    maven 依赖 <!-- 验证 --> <dependency> <groupId>org.hiberna ...

  6. 用javascript编写地区表单ES6

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 【Dubbo源码阅读系列】之远程服务调用(上)

    今天打算来讲一讲 Dubbo 服务远程调用.笔者在开始看 Dubbo 远程服务相关源码的时候,看的有点迷糊.后来慢慢明白 Dubbo 远程服务的调用的本质就是动态代理模式的一种实现.本地消费者无须知道 ...

  8. JAVA中的一些内置方法

    Math 函数: Math.E //自然常数e Math.abs(12.3); //返回该值的绝对值 Math.ceil(12.3); //向上取整 Math.floor(12.3); //向下取整 ...

  9. oracle中的某一个用户名修改

    1若修改某一个用户密码,修改用户口令格式为:alter user 用户名 identified by 新密码: 2以system 为例,想把密码修改为123456. 可输入alter user sys ...

  10. iOS利用block实现链式编程方法(Objective-C链式编程)

    objc利用block实现链式编程方法 因为不好读.block和其他语言的匿名函数一样,很多程序员刚开始很难主动去用他. 本文描述block作为属性的实际使用,看懂block,并讲解如何利用block ...