CF 148D Bag of mice 概率dp 难度:0
2 seconds
256 megabytes
standard input
standard output
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.
They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?
If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.
1 3
0.500000000
5 5
0.658730159
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins
思路:
设dp[i][j]为有i只白鼠,j只黑鼠,且恰巧轮到公主来选的时候的概率,则转移方程为
dp[i][j]=dp[i+1][j+2]*(j+2)/(i+j+3)*(j+1)/(i+j+2)*(i+1)*(i+j+1)
+dp[i][j+3]*(j+3)/(i+j+3)*(j+2)/(i+j+2)*(j+1)*(i+j+1)
对应胜率为dp[i][j]*i/(i+j)
#include <cstdio>
#include <cstring>
using namespace std;
double dp[1001][1001];
int w,b;
int main(){
scanf("%d%d",&w,&b);
double ans=0;
dp[w][b]=1;
for(int i=w;i>=0;i--){
for(int j=b;j>=0;j--){
//princess
if(i+j==0)continue;
ans+=dp[i][j]*i/(i+j);
double p=dp[i][j]*j/(i+j)*(j-1)/(i+j-1);
if(j>=3)dp[i][j-3]+=p*(j-2)/(i+j-2);
if(i>=1&&j>=2)dp[i-1][j-2]+=p*i/(i+j-2);
}
}
printf("%.10f\n",ans);
return 0;
}
CF 148D Bag of mice 概率dp 难度:0的更多相关文章
- CF 148D. Bag of mice (可能性DP)
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforce 148D. Bag of mice[概率dp]
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- CF 148D Bag of mice【概率DP】
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...
- Bag of mice(概率DP)
Bag of mice CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
随机推荐
- 洛谷P1373 小a和uim之大逃离 dp
正解:dp 解题报告: 传送门! 同样是看到列表发的题解就想着跟着做下dp的题目趴 然后发现还挺难的,,,反正我只大概想到怎么转移但是初始化什么的都不会TT 所以还是大概说下QAQ 首先可以想到设f[ ...
- Java char 和 String 的区别: 字符编码及其存储
一. ASCII码 上个世纪60年代,美国制定了一套字符编码,对英语字符与二进制位之间的关系,做了统一规定.这被称为ASCII码,一直沿用至今.一个字节(8bit)一共 可以用来表示256种不同的状态 ...
- 在一台server上部署多个Tomcat
版权声明: https://blog.csdn.net/u011518709/article/details/27181665 在一台server上配置多个Tomcat的方法: 这几天因为在研究OGS ...
- 详谈LABJS按需动态加载js文件
为了提高页面的打开和加载速度,我们经常把JS文件放在页面的尾部,但是有些JS必须放在页面前面,这样就会增加页面的加载时间:于是出现了按需动态加载的概念,这个概念就是当页面需要用到这个JS文件或者CSS ...
- 利用 TestNG 并行执行用例
原文地址https://testerhome.com/topics/1639 一.测试类*注1 package com.testerhome; import io.appium.java_client ...
- mono安装
linux上的DotNET,安装mono 当前,在Linux系统上架设ASP.NET网站.建设WEB应用工程项目已经在国内流行起来,而“Mono+Jexus”架构模式是Linux承载ASP.NET企业 ...
- Django 基础篇章
Django 紧紧地遵循这种 MVC 模式,可以称得上是一种 MVC 框架. 以下是 Django 中 M.V 和 C 各自的含义: M ,数据存取部分,由django数据库层处理. V ,选择显示哪 ...
- python基础之if语句
python之if语句 通用格式 if <test1>: <do something> elif: <do something> else: <do some ...
- uva10417 概率DP
这题 to[i][j] 为第i个人送j这个礼物的概率 我们用13进制进行压缩这个留下的的礼物的个数,这样我们将dp[i][k]表示为当第i个人放完礼物后得到的状态为k时的概率,那么通过记忆化搜索我们就 ...
- INNODB存储引擎表空间
这片文章主要是对innodb表空间的一些说明: innodb中表空间可以分为以下几种: 系统表空间 独立表空间 undo表空间 临时表空间(temporary tablespace) 通用表空间(ge ...