CF 148D Bag of mice 概率dp 难度:0
2 seconds
256 megabytes
standard input
standard output
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.
They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?
If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.
1 3
0.500000000
5 5
0.658730159
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins
思路:
设dp[i][j]为有i只白鼠,j只黑鼠,且恰巧轮到公主来选的时候的概率,则转移方程为
dp[i][j]=dp[i+1][j+2]*(j+2)/(i+j+3)*(j+1)/(i+j+2)*(i+1)*(i+j+1)
+dp[i][j+3]*(j+3)/(i+j+3)*(j+2)/(i+j+2)*(j+1)*(i+j+1)
对应胜率为dp[i][j]*i/(i+j)
#include <cstdio>
#include <cstring>
using namespace std;
double dp[1001][1001];
int w,b;
int main(){
scanf("%d%d",&w,&b);
double ans=0;
dp[w][b]=1;
for(int i=w;i>=0;i--){
for(int j=b;j>=0;j--){
//princess
if(i+j==0)continue;
ans+=dp[i][j]*i/(i+j);
double p=dp[i][j]*j/(i+j)*(j-1)/(i+j-1);
if(j>=3)dp[i][j-3]+=p*(j-2)/(i+j-2);
if(i>=1&&j>=2)dp[i-1][j-2]+=p*i/(i+j-2);
}
}
printf("%.10f\n",ans);
return 0;
}
CF 148D Bag of mice 概率dp 难度:0的更多相关文章
- CF 148D. Bag of mice (可能性DP)
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforce 148D. Bag of mice[概率dp]
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- CF 148D Bag of mice【概率DP】
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...
- Bag of mice(概率DP)
Bag of mice CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
随机推荐
- PyCharm安装与配置,python的Hello World
1. 访问https://www.jetbrains.com/zh/pycharm/download/download-thanks.html, 下载pycharm 安 装包,点击安装. 2. 用记事 ...
- CSS之Flex 布局:语法篇
网页布局(layout)是 CSS 的一个重点应用. 布局的传统解决方案,基于盒状模型,依赖 display 属性 + position属性 + float属性.它对于那些特殊布局非常不方便,比如 ...
- top与with ties用法
使用top中把与最后一条记录值相同的数据也放入列表中 一.SQL SERVER中使用WITH TIES的用途 with ties一般是和Top , order by相结合使用的,会查询出最后一条数据额 ...
- java反射机制与动态代理
在学习HadoopRPC时.用到了函数调用.函数调用都是採用的java的反射机制和动态代理来实现的,所以如今回想下java的反射和动态代理的相关知识. 一.反射 JAVA反射机制定义: JAVA反射机 ...
- centos LAMP第四部分mysql操作 忘记root密码 skip-innodb 配置慢查询日志 mysql常用操作 mysql常用操作 mysql备份与恢复 第二十二节课
centos LAMP第四部分mysql操作 忘记root密码 skip-innodb 配置慢查询日志 mysql常用操作 mysql常用操作 mysql备份与恢复 第二十二节课 mysq ...
- 002-Spring Framework-Core-01-IoC容器
一.概述 文章地址:https://docs.spring.io/spring/docs/5.0.6.RELEASE/spring-framework-reference/ 核心主要包括:IoC co ...
- SAP GUI常用快捷键
F1:帮助 F2:双击.比如TC行的双击,LIST行的双击等 F3:后退(Back),后退按钮 Shift+F3:退出(Exit),退出按钮 F4:搜索帮助 F8:执行 F10:菜单 F12:取消(C ...
- Django组件拾忆
知识预览 一 Django的form组件 二 Django的model form组件 三 Django的缓存机制 四 Django的信号 五 Django的序列化 回到顶部 一 Django的form ...
- idea中使用junit测试时使用Scanner类无法正常测试
解决办法是:在main函数中测试方可有效. public static void main(String[] args){ Scanner sc = new Scanner(System.in);// ...
- Flask权限管理
权限管理功能的实现可以分为以下几个小块: 1,新建数据库表Role,里面包括id(Integer,主键)name(String),permission(Integer),default(boolean ...