D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins

思路:

设dp[i][j]为有i只白鼠,j只黑鼠,且恰巧轮到公主来选的时候的概率,则转移方程为

dp[i][j]=dp[i+1][j+2]*(j+2)/(i+j+3)*(j+1)/(i+j+2)*(i+1)*(i+j+1)

  +dp[i][j+3]*(j+3)/(i+j+3)*(j+2)/(i+j+2)*(j+1)*(i+j+1)

对应胜率为dp[i][j]*i/(i+j)

#include <cstdio>
#include <cstring>
using namespace std;
double dp[1001][1001];
int w,b;
int main(){
scanf("%d%d",&w,&b);
double ans=0;
dp[w][b]=1;
for(int i=w;i>=0;i--){
for(int j=b;j>=0;j--){
//princess
if(i+j==0)continue;
ans+=dp[i][j]*i/(i+j);
double p=dp[i][j]*j/(i+j)*(j-1)/(i+j-1);
if(j>=3)dp[i][j-3]+=p*(j-2)/(i+j-2);
if(i>=1&&j>=2)dp[i-1][j-2]+=p*i/(i+j-2);
}
}
printf("%.10f\n",ans);
return 0;
}

  

CF 148D Bag of mice 概率dp 难度:0的更多相关文章

  1. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  5. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  6. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  7. CF 148D Bag of mice【概率DP】

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...

  8. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  9. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

随机推荐

  1. django基础之FBV与CBV,ajax序列化补充,Form表单

    目录: FBV与CBV ajax序列化补充 Form表单(一) 一.FBV与CBV 1.什么是FBV.CBV? django书写view时,支持两种格式写法,FBV(function bases vi ...

  2. RDD的源码

    RDD是一个抽象类定义了所有RDD共有的一些属性和方法,下面介绍了主要的属性和方法. abstract class RDD[T: ClassTag]( @transient private var _ ...

  3. java.lang.NoSuchMethodError: scala.Predef$.refArrayOps([Ljava/lang/Object;)Lscala/collection/mutable/ArrayOps;

    用Maven创建了一个spark sql项目,在引入spark sql jar包时引入的是: <dependency> <groupId>org.apache.spark< ...

  4. 2.2 The Object Model -- Reopening Classes and Instances

    1. 你不需要一开始定义一个类的全部内容,你可以通过使用reopen方法重新打开一个类并定义新的属性. Person.reopen({ isPerson: true }); Person.create ...

  5. hdu 5185 动态规划 分析降低复杂度

    这题说的是 x[1]+x[2]+x[3]+…+x[n]=n, 这里 0 <= x[i] <= n && 1 <= i <= n x[i] <= x[i+1 ...

  6. Entity Framework Code First在Oracle下的伪实现(转)

    为什么要说是伪实现,因为还做不到类似MsSql中那样完全的功能.Oralce中的数据库还是要我们自己手动去创建的.这里,我们舍掉了Model First中的EDMX文件,自己在代码里面写模型与映射关系 ...

  7. Python tricks(1) -- 动态定义一个新变量

    python是动态语言, 无需声明变量即可使用. 传递一个tuple, list或者dict等等方式, 有时候这种方式的使用不是很好. 对于tuple和list来说都是用下标的访问方式(即使用[]), ...

  8. 【小坑】java下载excel文件

    excel文件的导入导出是很常见的功能,这次做了个下载的功能,踩了一些坑,记下来避免以后重复踩…… 1.inputstream序列化问题 Could not write JSON document: ...

  9. Centos下给PHP一键升级高版本7.2.0

    我是在Centos下测试的,目前php版本是7.0.0,我要升级到php7.2.0,下面开始. 执行命令 # wget http://soft.vpser.net/lnmp/upgrade_php.s ...

  10. bzoj1628 [Usaco2007 Demo]City skyline(单调栈)

    Description Input 第一行给出N,W 第二行到第N+1行:每行给出二个整数x,y,输入的x严格递增,并且第一个x总是1 Output 输出一个整数,表示城市中最少包含的建筑物数量 Sa ...