CF 148D Bag of mice 概率dp 难度:0
2 seconds
256 megabytes
standard input
standard output
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.
They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?
If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.
1 3
0.500000000
5 5
0.658730159
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins
思路:
设dp[i][j]为有i只白鼠,j只黑鼠,且恰巧轮到公主来选的时候的概率,则转移方程为
dp[i][j]=dp[i+1][j+2]*(j+2)/(i+j+3)*(j+1)/(i+j+2)*(i+1)*(i+j+1)
+dp[i][j+3]*(j+3)/(i+j+3)*(j+2)/(i+j+2)*(j+1)*(i+j+1)
对应胜率为dp[i][j]*i/(i+j)
#include <cstdio>
#include <cstring>
using namespace std;
double dp[1001][1001];
int w,b;
int main(){
scanf("%d%d",&w,&b);
double ans=0;
dp[w][b]=1;
for(int i=w;i>=0;i--){
for(int j=b;j>=0;j--){
//princess
if(i+j==0)continue;
ans+=dp[i][j]*i/(i+j);
double p=dp[i][j]*j/(i+j)*(j-1)/(i+j-1);
if(j>=3)dp[i][j-3]+=p*(j-2)/(i+j-2);
if(i>=1&&j>=2)dp[i-1][j-2]+=p*i/(i+j-2);
}
}
printf("%.10f\n",ans);
return 0;
}
CF 148D Bag of mice 概率dp 难度:0的更多相关文章
- CF 148D. Bag of mice (可能性DP)
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforce 148D. Bag of mice[概率dp]
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- CF 148D Bag of mice【概率DP】
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...
- Bag of mice(概率DP)
Bag of mice CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
随机推荐
- nginx:服务器集群
一.Nginx的事件处理机制 对于一个基本的web服务器来说,事件通常有三种类型,网络事件.信号.定时器. 首先看一个请求的基本过程:建立连接---接收数据---发送数据 . 再次看系统底层的操作 : ...
- 当Web访问性能出现问题,如何深探?
对运维或开发工程师来说,遇到访问性能问题时,最先需要定位的是问题出现在哪个环节,是网络的问题,服务端的问题,还是客户端的问题? 往往技术人员喜欢把精力放在保障后端服务的可用性方面,而对前端界面是否能正 ...
- SHFileOperation的用法
//删除文件或者文件夹bool DeleteFile(char * lpszPath){SHFILEOPSTRUCT FileOp={0};FileOp.fFlags = FOF_ALLOWUNDO ...
- Day24-26 项目练习(图书商城)
图书商城 环境搭建 导入原型 用户模块 分类模块 图书模块 购物车模块 订单模块 2 功能分析 前台 用户模块: 注册 激活 登录 退出 分类模块: 查看所有分类 图书模块: 查询所有图书 按分类 ...
- android(十四)四种启动模式
standard 启动的activity会每次都重新创建一个activity放到任务栈中.这是系统默认的启动模式. singleTop启动的activity,如果任务的栈顶刚好存在当前的activit ...
- form表单上传图片问题:线下可以而线上不可以
由于上传图片需要一定时间,而线下速度快线上速度慢. 所以如果你的上传窗口是弹出界面,那么就会面临上传未完成就关闭了该界面.导致上传失败.
- 流畅的python 读书笔记 第二章 序列构成的数组 列表推导
列表推导是构建列表(list)的快捷方式,而生成器表达式则可以用来创建其他任何类型的序列.如果你的代码里并不经常使用它们,那么很可能你错过了许多写出可读性更好且更高效的代码的机会. 2.2.1 列表推 ...
- OPENSSL编程 (secure shell, ssh)
很好的 OPENSSL编程 教程,名字就叫“OPENSSL编程” 它里面还有很多关于密码学的东西. http://www.pengshuo.me http://www.pengshuo.me/2014 ...
- python16_day34【设计模式】
一.简单工厂模式 # coding : utf-8 # create by ztypl on 2017/5/24 from abc import abstractmethod, ABCMeta cla ...
- 自定义查询语句SpringData
虽然官方的API中给我们提供了很多关键字的查询,但是还是不够灵活,因为我们在项目中,会遇见奇葩的业务,我们需要用SpringData中的一个@Query注解. 使用@Query自定义查询 这种查询可以 ...