题目大意

N个点的有向图中,定义“好点”为: 
从该点v出发可以到达的所有点u,均有一条路径使得u可达v。 
求出图中所有的“好点”,并按照顺序从小到大输出出来。

题目分析

图存在多个强连通分支,强连通分支内的所有点的行为可以视为一个点的行为:若强连通分支可以到达其他强连通分支,则该强连通分支内的所有点均可以到达其他分支;若强连通分支可以被其他点到达,则该强连通分支内的所有点均可以被其他点到达。因此,将图的强连通分支缩成一个点是一个经常会进行的操作。 
    将强连通分支缩成一个点之后,形成一个有向无环图。在有向无环图中,出度为0的点所代表的强连通分支,显然满足“好点”的要求;而出度不为0的点,显然存在它可以到达的点,但这些点不能到达它,故不满足“好点”的要求。因此,“好点”就是出度为0的点代表的强连通分支内的点。

实现(c++)

#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<set>
using namespace std;
#define MAX_NODE 5005
#define min(a, b) a < b? a:b
#define max(a, b) a > b? a:b vector<int> gGraph[MAX_NODE];
stack<int> gStack;
int gDfn[MAX_NODE];
int gLow[MAX_NODE]; bool gVisited[MAX_NODE];
bool gInStack[MAX_NODE];
int gClusterOfNode[MAX_NODE];
int gIndex;
int gClusterIndex; //Tarjan算法求强连通分支
void Tarjan(int u){
gDfn[u] = gLow[u] = ++gIndex;
gInStack[u] = true;
gVisited[u] = true;
gStack.push(u); for (int i = 0; i < gGraph[u].size(); i++){
int v = gGraph[u][i];
if (!gVisited[v]){
Tarjan(v);
gLow[u] = min(gLow[u], gLow[v]);
}
else if (gInStack[v]){
gLow[u] = min(gLow[u], gDfn[v]);
}
}
if (gDfn[u] == gLow[u]){
int v;
do{
v = gStack.top();
gStack.pop();
gInStack[v] = false;
gClusterOfNode[v] = gClusterIndex;
} while (v != u);
++gClusterIndex;
}
}
vector<set<int> >gLinkFrom; //每个强连通分支,入点集合
vector<set<int> > gLinkTo; //每个强连通分支,出点集合
void ReconstructGraph(int nodes, int clusters){
gLinkFrom.clear();
gLinkFrom.resize(clusters);
gLinkTo.clear();
gLinkTo.resize(clusters); for (int u = 1; u <= nodes; u++){
for (int i = 0; i < gGraph[u].size(); i++){
int v = gGraph[u][i];
int uc = gClusterOfNode[u];
int vc = gClusterOfNode[v];
if (uc != vc){ //注意!!!
gLinkTo[uc].insert(vc);
gLinkFrom[vc].insert(uc);
}
}
}
} int main(){
int n, r;
while (scanf("%d", &n) && n != 0){ scanf("%d", &r); for (int i = 0; i <= n; i++){
gGraph[i].clear();
} int u, v;
for (int i = 0; i < r; i++){
scanf("%d %d", &u, &v);
gGraph[u].push_back(v);
} memset(gVisited, false, sizeof(gVisited));
memset(gInStack, false, sizeof(gInStack));
gIndex = gClusterIndex = 0;
for (int i = 1; i <= n; i++){
if (!gVisited[i])
Tarjan(i);
} ReconstructGraph(n, gClusterIndex); //将染色后的图进行重构(即设置强连通分支) set<int> zero_outdegree_cluster_id; //出度为0的强连通分支的集合
for (int i = 0; i < gClusterIndex; i++){
if (gLinkTo[i].empty()){ //出度为0,强连通分支
zero_outdegree_cluster_id.insert(i);
}
} //遍历每个点,判断其是否属于那些出度为0的强连通分支
for (int u = 1; u <= n; u++){
if (zero_outdegree_cluster_id.find(gClusterOfNode[u]) != zero_outdegree_cluster_id.end()){
printf("%d ", u);
}
} printf("\n");
}
return 0;
}

poj_2553 强连通分支&出度为0的点的更多相关文章

  1. POJ1236 (强连通分量缩点求入度为0和出度为0的分量个数)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13804   Accepted: 55 ...

  2. POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)

    Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...

  3. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  4. POJ2186 (强连通分量缩点后出度为0的分量内点个数)

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27820   Accepted: 11208 De ...

  5. POJ-2186 Popular Cows,tarjan缩点找出度为0的点。

    Popular Cows 题意:一只牛崇拜另外一只牛,这种崇拜关系可以传导.A->B,B->C =>A->C.现在给出所有的关系问你有多少牛被其他所有的牛都崇拜. 思路:就是一 ...

  6. POJ2553 强连通出度为0的应用

    题意:       给你一个有向图,然后问你有多少个满足要求的点,要求是: 这个点能走到的所有点都能走回这个点,找到所有的这样的点,然后排序输出. 思路:       可以直接一遍强连通缩点,所点之后 ...

  7. poj 2553 强连通分支与缩点

    思路:将所有强连通分支找出来,并进行缩点,然后找其中所有出度为0的连通分支,就是题目要求的. #include<iostream> #include<cstdio> #incl ...

  8. poj 2186 强连通分支 和 spfa

    思路: 建图时,分别建正向图edge和转置图T.用正向图edge来DFS,找出第一个被发现的强连通分支(如果该图存在题目要求的点,那么一定就是第一个被发现的).然后用spfa跑转置图T,判断被发现的点 ...

  9. poj 1236 Network of Schools【强连通求孤立强连通分支个数&&最少加多少条边使其成为强连通图】

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13800   Accepted: 55 ...

随机推荐

  1. wm8976 codec

    root@phyCORE-AM335x:~ amixer controlsnumid=38,iface=MIXER,name='Headphone Playback Switch'numid=39,i ...

  2. Android—— TextView文字链接4中方法

    转自:http://ghostfromheaven.iteye.com/blog/752181 Android 的实现TextView中文字链接的方式有很多种. 总结起来大概有4种: 1.当文字中出现 ...

  3. REST构架风格介绍:状态表述转移(转)

    本文总结了一些REST风格构架设计的经验,介绍了REST架构的语言生态环境,状态表述转移,无状态服务器等特点,并通过举例Google来说明REST风格的味道. REST(Representationa ...

  4. golang中map并发读写问题及解决方法

    一.map并发读写问题 如果map由多协程同时读和写就会出现 fatal error:concurrent map read and map write的错误 如下代码很容易就出现map并发读写问题 ...

  5. 搭建Maven环境——使用本地的maven环境

    1.安装JDK. 2.Maven是 Apache 下的一个项目,官网下载 Maven:http://maven.apache.org/download.cgi 系统变量:M2_HOME= G:\vis ...

  6. eclipse lua

    eclipse中的ldt插件是Lua Development Tools,开发lua专用的插件: 1.点击help->install new softWare,输入http://luaeclip ...

  7. Linux如何通过命令查看日志文件的某几行(中间几行或最后几行)

    linux 如何显示一个文件的某几行(中间几行) [一]从第3000行开始,显示1000行.即显示3000~3999行 cat filename | tail -n +3000 | head -n 1 ...

  8. Linux之zip压缩

    1.压缩 对于test目录,使用 zip -rq test.zip test r表示递归压缩,q表示不显示过程 2.解压缩 unzip -q test.zip

  9. VS2013环境生成和调用DLL动态链接库

    http://blog.csdn.net/u010273652/article/details/25514577 创建动态库方法: 创建动态库是生成 .dll .lib 两个个文件 文件 -> ...

  10. Json.net 时间格式处理

    json.net转json时生成的时间格式是这种 2015-11-14T06:59:59+08:00 格式化为这种2015-11-14 后台代码: IsoDateTimeConverter timeF ...