题目大意

N个点的有向图中,定义“好点”为: 
从该点v出发可以到达的所有点u,均有一条路径使得u可达v。 
求出图中所有的“好点”,并按照顺序从小到大输出出来。

题目分析

图存在多个强连通分支,强连通分支内的所有点的行为可以视为一个点的行为:若强连通分支可以到达其他强连通分支,则该强连通分支内的所有点均可以到达其他分支;若强连通分支可以被其他点到达,则该强连通分支内的所有点均可以被其他点到达。因此,将图的强连通分支缩成一个点是一个经常会进行的操作。 
    将强连通分支缩成一个点之后,形成一个有向无环图。在有向无环图中,出度为0的点所代表的强连通分支,显然满足“好点”的要求;而出度不为0的点,显然存在它可以到达的点,但这些点不能到达它,故不满足“好点”的要求。因此,“好点”就是出度为0的点代表的强连通分支内的点。

实现(c++)

#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<set>
using namespace std;
#define MAX_NODE 5005
#define min(a, b) a < b? a:b
#define max(a, b) a > b? a:b vector<int> gGraph[MAX_NODE];
stack<int> gStack;
int gDfn[MAX_NODE];
int gLow[MAX_NODE]; bool gVisited[MAX_NODE];
bool gInStack[MAX_NODE];
int gClusterOfNode[MAX_NODE];
int gIndex;
int gClusterIndex; //Tarjan算法求强连通分支
void Tarjan(int u){
gDfn[u] = gLow[u] = ++gIndex;
gInStack[u] = true;
gVisited[u] = true;
gStack.push(u); for (int i = 0; i < gGraph[u].size(); i++){
int v = gGraph[u][i];
if (!gVisited[v]){
Tarjan(v);
gLow[u] = min(gLow[u], gLow[v]);
}
else if (gInStack[v]){
gLow[u] = min(gLow[u], gDfn[v]);
}
}
if (gDfn[u] == gLow[u]){
int v;
do{
v = gStack.top();
gStack.pop();
gInStack[v] = false;
gClusterOfNode[v] = gClusterIndex;
} while (v != u);
++gClusterIndex;
}
}
vector<set<int> >gLinkFrom; //每个强连通分支,入点集合
vector<set<int> > gLinkTo; //每个强连通分支,出点集合
void ReconstructGraph(int nodes, int clusters){
gLinkFrom.clear();
gLinkFrom.resize(clusters);
gLinkTo.clear();
gLinkTo.resize(clusters); for (int u = 1; u <= nodes; u++){
for (int i = 0; i < gGraph[u].size(); i++){
int v = gGraph[u][i];
int uc = gClusterOfNode[u];
int vc = gClusterOfNode[v];
if (uc != vc){ //注意!!!
gLinkTo[uc].insert(vc);
gLinkFrom[vc].insert(uc);
}
}
}
} int main(){
int n, r;
while (scanf("%d", &n) && n != 0){ scanf("%d", &r); for (int i = 0; i <= n; i++){
gGraph[i].clear();
} int u, v;
for (int i = 0; i < r; i++){
scanf("%d %d", &u, &v);
gGraph[u].push_back(v);
} memset(gVisited, false, sizeof(gVisited));
memset(gInStack, false, sizeof(gInStack));
gIndex = gClusterIndex = 0;
for (int i = 1; i <= n; i++){
if (!gVisited[i])
Tarjan(i);
} ReconstructGraph(n, gClusterIndex); //将染色后的图进行重构(即设置强连通分支) set<int> zero_outdegree_cluster_id; //出度为0的强连通分支的集合
for (int i = 0; i < gClusterIndex; i++){
if (gLinkTo[i].empty()){ //出度为0,强连通分支
zero_outdegree_cluster_id.insert(i);
}
} //遍历每个点,判断其是否属于那些出度为0的强连通分支
for (int u = 1; u <= n; u++){
if (zero_outdegree_cluster_id.find(gClusterOfNode[u]) != zero_outdegree_cluster_id.end()){
printf("%d ", u);
}
} printf("\n");
}
return 0;
}

poj_2553 强连通分支&出度为0的点的更多相关文章

  1. POJ1236 (强连通分量缩点求入度为0和出度为0的分量个数)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13804   Accepted: 55 ...

  2. POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)

    Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...

  3. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  4. POJ2186 (强连通分量缩点后出度为0的分量内点个数)

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27820   Accepted: 11208 De ...

  5. POJ-2186 Popular Cows,tarjan缩点找出度为0的点。

    Popular Cows 题意:一只牛崇拜另外一只牛,这种崇拜关系可以传导.A->B,B->C =>A->C.现在给出所有的关系问你有多少牛被其他所有的牛都崇拜. 思路:就是一 ...

  6. POJ2553 强连通出度为0的应用

    题意:       给你一个有向图,然后问你有多少个满足要求的点,要求是: 这个点能走到的所有点都能走回这个点,找到所有的这样的点,然后排序输出. 思路:       可以直接一遍强连通缩点,所点之后 ...

  7. poj 2553 强连通分支与缩点

    思路:将所有强连通分支找出来,并进行缩点,然后找其中所有出度为0的连通分支,就是题目要求的. #include<iostream> #include<cstdio> #incl ...

  8. poj 2186 强连通分支 和 spfa

    思路: 建图时,分别建正向图edge和转置图T.用正向图edge来DFS,找出第一个被发现的强连通分支(如果该图存在题目要求的点,那么一定就是第一个被发现的).然后用spfa跑转置图T,判断被发现的点 ...

  9. poj 1236 Network of Schools【强连通求孤立强连通分支个数&&最少加多少条边使其成为强连通图】

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13800   Accepted: 55 ...

随机推荐

  1. 【C#】获取机器码MachineCode

    需求:机器码可以用于校验用户是否用的同一台电脑登录,比如在别的机器上登录时做强制下线(踢人下线).通常在用户注册时,计算一次用户的机器码跟随注册信息一起发送给服务器. 机器码的作用看百度百科: 定义规 ...

  2. [ubuntu]E: The package firmware-upgrade needs to be reinstalled, but I can't find an archive for it.

    解决办法把firmware-upgrade卸载 sudo dpkg --remove --force-all firmware-upgrade 然后 sudo apt-get update 即可

  3. JAVA String.format 方法使用介绍<转>

    在JDK1.5中,String类增加了一个非常有用的静态函数format(String  format, Objece...  argues),可以将各类数据格式化为字符串并输出.其中format参数 ...

  4. mkyaffs2image编译

    http://blog.chinaunix.net/uid-26009923-id-3760474.htmlhttp://blog.csdn.net/xingtian19880101/article/ ...

  5. JSON教程

    一.什么是JSON 1.JSON指的是JavaScript对象表示法(JavaScript Object Notation). 2.JSON是轻量级的文本数据交换格式,比XML更小.更快.更易解析. ...

  6. PHP变量解析顺序variables_order

    转载自:http://blog.csdn.net/knight0450/article/details/4291556 故事从一个有点诡异的BUG开始,后台一个使用频率不是很高的广告提交功能有时候会莫 ...

  7. jQuery EasyUI教程之datagrid应用-2

    二.DataGrid的扩展应用 上一份教程我们创建的一个CRUD应用是使用对话框组件来增加或编辑用户信息.本教程将教你如何创建一个CRUD 数据表格(datagrid). 为了让这些CRUD功能正常工 ...

  8. 终于想明白一些事,关于NAS

    一直以来想搞好一部NAS存储小孩的视频和照片,一直纠结用什么硬件,硬件解决后虽然不甚满意,不过无论怎么样都算投入巨资(超过7千……)组装完毕,然后就一直纠结用什么NAS系统,终于下定决心使用了OMV, ...

  9. Mastering the game of Go with deep neural networks and tree search浅析

    Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." ...

  10. 【转】【Linux】linux awk命令详解

    简介 awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再 ...