Supreme Number

  • 1000ms
  • 131072K
 

A prime number (or a prime) is a natural number greater than 111 that cannot be formed by multiplying two smaller natural numbers.

Now lets define a number NNN as the supreme number if and only if each number made up of an non-empty subsequence of all the numeric digits of NNN must be either a prime number or 111.

For example, 171717 is a supreme number because 111, 777, 171717 are all prime numbers or 111, and 191919 is not, because 999 is not a prime number.

Now you are given an integer N (2≤N≤10100)N\ (2 \leq N \leq 10^{100})N (2≤N≤10100), could you find the maximal supreme number that does not exceed NNN?

Input

In the first line, there is an integer T (T≤100000)T\ (T \leq 100000)T (T≤100000) indicating the numbers of test cases.

In the following TTT lines, there is an integer N (2≤N≤10100)N\ (2 \leq N \leq 10^{100})N (2≤N≤10100).

Output

For each test case print "Case #x: y", in which xxx is the order number of the test case and yyy is the answer.

样例输入

2
6
100

样例输出

Case #1: 5
Case #2: 73
 #include<bits/stdc++.h>
using namespace std;
int main()
{
int a[] = {,,,,,,,,,,,,,,,,,,,
};
int s;
int t,count = ;
cin >> t;
while(t--)
{
cin >> s;
cout << "Case #" << count++ << ": " ;
if(s >= )
{
cout << a[] << endl;
continue;
}
else
{
for(int i = ; i >= ; i --)
{
if(s >= a[i])
{
cout << a[i] << endl;
break;
}
}
}
}
return ;
}

ACM-ICPC 2018 沈阳赛区网络预赛的更多相关文章

  1. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  2. ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number

    Supreme Number A prime number (or a prime) is a natural number greater than 11 that cannot be formed ...

  3. ACM-ICPC 2018 沈阳赛区网络预赛-D:Made In Heaven(K短路+A*模板)

    Made In Heaven One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. ...

  4. 图上两点之间的第k最短路径的长度 ACM-ICPC 2018 沈阳赛区网络预赛 D. Made In Heaven

    131072K   One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. Howe ...

  5. ACM-ICPC 2018 沈阳赛区网络预赛 J树分块

    J. Ka Chang Given a rooted tree ( the root is node 11 ) of NN nodes. Initially, each node has zero p ...

  6. ACM-ICPC 2018 沈阳赛区网络预赛 K. Supreme Number

    A prime number (or a prime) is a natural number greater than 11 that cannot be formed by multiplying ...

  7. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph

    "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...

  8. Fantastic Graph 2018 沈阳赛区网络预赛 F题

    题意: 二分图 有k条边,我们去选择其中的几条 每选中一条那么此条边的u 和 v的度数就+1,最后使得所有点的度数都在[l, r]这个区间内 , 这就相当于 边流入1,流出1,最后使流量平衡 解析: ...

  9. ACM-ICPC 2018 沈阳赛区网络预赛 F Fantastic Graph(贪心或有源汇上下界网络流)

    https://nanti.jisuanke.com/t/31447 题意 一个二分图,左边N个点,右边M个点,中间K条边,问你是否可以删掉边使得所有点的度数在[L,R]之间 分析 最大流不太会.. ...

  10. ACM-ICPC 2018 沈阳赛区网络预赛 B Call of Accepted(表达式求值)

    https://nanti.jisuanke.com/t/31443 题意 给出一个表达式,求最小值和最大值. 表达式中的运算符只有'+'.'-'.'*'.'d',xdy 表示一个 y 面的骰子 ro ...

随机推荐

  1. Myeclipse报错:The word is not correctly spelled

    在eclipse下的Window--Preference输入spell,然后把第一个复选框“Enable spell checking"给去掉就可以了.

  2. jdbc之连接Oracle的基本步骤

    // 1.加载驱动程序 Class.forName("oracle.jdbc.driver.OracleDriver"); // 2.获取数据库连接 Connection conn ...

  3. C#中的抽象方法,虚方法,接口之间的对比

    1.首先来看一看抽象类 抽象类是特殊的类,不能够被实例化:具有类的其他特性:抽象方法只能声明于抽象类中,且不包含任何实现 (就是不能有方法体),派生类也就是子类必须对其进行重写.另外,抽象类可以派生自 ...

  4. Python学习之——Python安装

    环境:Centos6.5+python2.7.5 1.centons6.5系统中是已经安装了python的,先查看版本是不是需要的 python --version 2.安装一些必要的包,防止后面需要 ...

  5. hadoop errors

    1.taskTracker和jobTracker 启动失败 2011-01-05 12:44:42,144 ERROR org.apache.hadoop.mapred.TaskTracker: Ca ...

  6. 20155206 2016-2017-2 《Java程序设计》第十周学习总结

    20155206 2016-2017-2 <Java程序设计>第十周学习总结. 教材学习内容总结 教材学习内容总结 Java的网络编程 •网络编程是指编写运行在多个设备(计算机)的程序,这 ...

  7. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛

    A There is a tree with nn nodes, at which attach a binary 64*6464∗64 matrix M_i (1 \le i \le n)M ​i ...

  8. 使用cursor递归遍历sqlserver的相应表

    use rc GO )DECLARE cur1 cursor for select [name] from sys.tables where name LIKE 'index_%' drop tabl ...

  9. 1178: [Apio2009]CONVENTION会议中心

    1178: [Apio2009]CONVENTION会议中心 https://lydsy.com/JudgeOnline/problem.php?id=1178 分析: set+倍增. 首先把所有有包 ...

  10. GlusterFS学习之路(三)客户端挂载和管理GlusterFS卷

    一.客户端挂载 可以使用Gluster Native Client方法在GNU / Linux客户端中实现高并发性,性能和透明故障转移.可以使用NFS v3访问gluster卷.已经对GNU / Li ...