Floyd算法

问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度。

解决该问题有以下两种方法:

(1)轮流以每一个定点为源点,重复执行Dijkstra算法或者Bellman-Ford算法n次,就可以求出每一对顶点之间的最短路径和最短路径的长度,总的时间复杂度为O(n^3)。

(2)采用Floyd算法,时间复杂度也是O(n^3),但是形式更为直接。

1.介绍

  floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题。

2.思想:

  Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

举个例子:已知下图,

  如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

 for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}

接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

 //经过1号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];

最后允许通过所有顶点作为中转,代码如下:

   for(k=; k<=n; k++)///Floyd-Warshall算法核心语句
{
for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
if(map[i][j]>map[i][k]+map[k][j] )
{
map[i][j]=map[i][k]+map[k][j];
}
}
}
}

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同

3.代码模板:

 #include <stdio.h>
#define inf 0x3f3f3f3f
int map[][];
int main()
{
int k,i,j,n,m;///n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m);
for(i=; i<=n; i++)///初始化
{
for(j=; j<=n; j++)
{
if(i==j)
map[i][j]=;
else
map[i][j]=inf;
}
}
int a,b,c;
for(i=; i<=m; i++)///有向图
{
scanf("%d %d %d",&a,&b,&c);
map[a][b]=c;
}
for(k=; k<=n; k++)///Floyd-Warshall算法核心语句
{
for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
if(map[i][j]>map[i][k]+map[k][j] )
{
map[i][j]=map[i][k]+map[k][j];
}
}
}
}
for(i=; i<=n; i++)///输出最终的结果,最终二维数组中存的即使两点之间的最短距离
{
for(j=; j<=n; j++)
{
printf("%10d",map[i][j]);
}
printf("\n");
}
return ;
}

多源最短路——Floyd算法的更多相关文章

  1. 多源最短路Floyd 算法————matlab实现

    弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...

  2. 多源最短路(floyd算法)

    Floyd算法: 如何简单方便的求出图中任意两点的最短路径 Floyd-Warshall算法(O(n)比较适用于边较多的稠密图(Dense Graph)) Floyd算法用来找出每对顶点之间的最短距离 ...

  3. 模板C++ 03图论算法 2最短路之全源最短路(Floyd)

    3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...

  4. 【ACM程序设计】求短路 Floyd算法

    最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...

  5. 最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)

    再开始前我们先普及一下简单的图论知识 图的保存: 1.邻接矩阵. G[maxn][maxn]; 2.邻接表 邻接表我们有两种方式 (1)vector< Node > G[maxn]; 这个 ...

  6. 最短路 - floyd算法

    floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...

  7. HDU 2066 最短路floyd算法+优化

    http://acm.hdu.edu.cn/showproblem.php?pid=206 题意 从任意一个邻居家出发 到达任意一个终点的 最小距离 解析 求多源最短路 我想到的是Floyd算法 但是 ...

  8. 最短路--floyd算法模板

    floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...

  9. 单源最短路——Bellman-Ford算法

    1.Dijkstra的局限性 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的. 列如以 ...

随机推荐

  1. Extjs 中callParent的作用

    callParent 是 Sencha 类系统提供的一个用于调用你父/祖先类中的方法. 这个通常用于当你 继承一个框架类 或者 覆写一个类中提供的方法(比如 onRender) 时. 当你在一个带参数 ...

  2. 前端基础-jQuery的动画效果

    阅读目录 隐藏 显示 切换 下拉 上卷 显示 一.jQuery中隐藏元素的hide方法 让页面上的元素不可见,一般可以通过设置css的display为none属性.但是通过css直接修改是静态的布局, ...

  3. The Bitizens Team

    bitizens.bitguild.com 首个区块链3D艺术品. https://mybitizens.bitguild.com/#/igo https://www.youtube.com/watc ...

  4. 运行TensorFlow报错,“This program requires version 3.6.1 of the Protocol Buffer runtime library, but the installed version is 3.0.0.”

    报错信息: [libprotobuf FATAL google/protobuf/src/google/protobuf/stubs/common.cc:67] This program requir ...

  5. 请简述以下两个for 循环的优缺点

    今天笔试时候遇到一个问题,找到相似的. ; i<N; i++) { if (condition) DoSomething(); else DoOtherthing(); } if (condit ...

  6. python学习之网络编程基础

    引入场景:客户与银行关系 银行职员负责给客户提供取钱服务,客户通过账户密码跟银行职员建立合作关系.此时银行职员就可以作为服务器,当用户A取完钱后他需要等待下一个用户的接入,用户的账号密码就是建立合作关 ...

  7. 11-while循环基本使用

    hm_02_第一个while循环.py def main(): i = 1 while i <= 3: print(i, 'Hello world') i += 1 print(i) 1 Hel ...

  8. BurpSuite系列(一)----Proxy模块(代理模块)

    一.简介 Proxy代理模块作为BurpSuite的核心功能,拦截HTTP/S的代理服务器,作为一个在浏览器和目标应用程序之间的中间人,允许你拦截,查看,修改在两个方向上的原始数据流. Burp 代理 ...

  9. 防360TAB页面的样式页面

    今天给朋友做了一个仿照360新tab页面的效果,主要就是一些样式和JQUERY的应用,超级简单,现在把源码放出来 源码下载

  10. AvalonEdit-基于WPF的代码显示控件

    AvalonEdit是基于WPF的代码显示控件,项目地址:https://github.com/icsharpcode/AvalonEdit,支持C#,javascript,C++,XML,HTML, ...