windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按

顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们
对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 
如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 
windy的操作如下 
1 2 3 4 5 6 
2 3 1 5 4 6 
3 1 2 4 5 6 
1 2 3 5 4 6 
2 3 1 4 5 6 
3 1 2 5 4 6 
1 2 3 4 5 6 
这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可
能的排数。



乍一看好像是有关置换群的东西,但其实关系不大;

不过我们按照群的思路思考:

一个对应关系就是一个置换;
这个问题变成了给定一个n,
问一个n元置换群里的所有置换,他们各自的x次方等于π0的这个x,有几种可能;
我们知道一个置换是有许多循环构成的;
于是有:一个对应关系(置换)的所有循环的大小的最小公倍数即是该对应关系(置换)的x,然后一个对应关系(置换)的所有循环的大小的加和不能超过n;
这个东西好像可以用来check一个x;
——对于一个x,把她唯一分解,为,如果把pi换成sum后,结果小于n,则行数x合法,否则,不合法;
(这是在找LCM是x而加和最小的一组数——这组数里的每个数就是一个——然后check她的加和)
然后这个结论没有二分的性质,于是可以尝试枚举x然后check;
——事实上我一开始就写了这个,然后x可能枚举到很大,就炸了......
于是考虑递推一个方案数;
一个合法方案是指:找一组(质数的幂),其加和小于等于n;
(在原题里的意思是:一个合法方案是一个置换,她的每一个循环都是一个质数的幂,当然可以还剩下一些元素,就让他们子环,但是循环的大小和不能比n大)
由于每一个方案构成的x都不同,所以方案数就是答案;
代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=;
int prime[MAXN];
bool vis[MAXN];
int n,cnt;
long long f[][];
int Prime(int );
int main()
{
int i,j,k;
long long ans=;
scanf("%d",&n);
cnt=Prime(n);
f[][]=;
for(i=;i<=cnt;i++)
for(j=;j<=n;j++){
f[i][j]+=f[i-][j];
for(k=prime[i];k<=j;k*=prime[i])
f[i][j]+=f[i-][j-k];
}
for(i=;i<=n;i++)
ans+=f[cnt][i];
printf("%lld",ans);
return ;
}
int Prime(int n){
int cnt=;
memset(vis,,sizeof(vis));vis[]=;
for(int i=;i<=n;i++){
if(!vis[i])
prime[++cnt]=i;
for(int j=;j<=cnt&&i*prime[j]<=n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
return cnt;
}

P1025[SCOI2009]游戏的更多相关文章

  1. SCOI2009游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1065  Solved: 673[Submit][Status] ...

  2. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  3. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  4. 【BZOJ1025】[SCOI2009]游戏(动态规划)

    [BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...

  5. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  6. AC日记——[SCOI2009]游戏 bzoj 1025

    [SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...

  7. 【bzoj1025】[SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1987  Solved: 1289[Submit][Status] ...

  8. BZOJ_1025_[SCOI2009]游戏_DP+置换+数学

    BZOJ_1025_[SCOI2009]游戏_DP+置换 Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按 顺序1 ...

  9. BZOJ1025: [SCOI2009]游戏

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

随机推荐

  1. P4382 [八省联考2018]劈配

    题目链接 题意分析 受到了\(olinr\ \ julao\)的影响 写了匈牙利算法 首先 我们对于每一个人 从高到低枚举志愿 如果当前志愿的老师有剩余的话 那么我们就选 否则的话 我们看看谁的那个志 ...

  2. leetcode-896-单调数列

    题目描述: 如果数组是单调递增或单调递减的,那么它是单调的. 如果对于所有 i <= j,A[i] <= A[j],那么数组 A 是单调递增的. 如果对于所有 i <= j,A[i] ...

  3. 【Quartz】解密properties配置文件中的账号密码

    在配置quartz时,为了保密某些信息(特别是账号密码),通常会使用密文.那么在实际使用这些配置信息时,需要进行解密.本文提供一种解密方法如下: (1)假设在properties文件中加密了账号密码 ...

  4. windows任务管理器所查的网站

    添加menu   https://blog.csdn.net/u012273127/article/details/71293088 点击菜单打开对话框  https://blog.csdn.net/ ...

  5. ReactNative常用组件库 victory-native 图表

    victory-native 是不错的图表组件,支持很多种图表 地址: https://github.com/FormidableLabs/victory-native 先安装 react-nativ ...

  6. 关于 maven 打包直接运行的 fat jar (uber jar) 时需要包含本地文件系统第三方 jar 文件的问题

    关于maven打包fat jar (uber jar) 时需要包含本地文件系统第三方jar文件的问题,今天折腾了一整天.最后还是用了spring boot来做.下面是几篇关于打包的有参考价值的文章,以 ...

  7. Q673 最长递增子序列的个数

    给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7] ...

  8. mongoengine在python中的使用

    # /usr/bin/python # encoding: utf-8 # Author: masako from mongoengine import * host ='127.0.0.1' por ...

  9. xampp使用技巧及问题汇总

    1)在win7上同时装有IIS 和 xampp1.8.2 ,会出现Apache启动时,提示80端口被占用的情况(一般是iis安装之后出现的常见情况). 情况1:  xampp 在启动时会检测Apach ...

  10. 本地jar包 安装到本地仓库中的命令

    maven 项目 本地jar包 安装到本地仓库中去: 首先进入到该文件所在文件夹内 若不在直接绝对路径就可以.注意命令中的空格 mvn install:install-file  -Dfile=文件名 ...