P1025[SCOI2009]游戏
windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按
顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们
对应的数字。如此反复,直到序列再次变为1,2,3,……,N。
如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6
windy的操作如下
1 2 3 4 5 6
2 3 1 5 4 6
3 1 2 4 5 6
1 2 3 5 4 6
2 3 1 4 5 6
3 1 2 5 4 6
1 2 3 4 5 6
这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可
能的排数。
乍一看好像是有关置换群的东西,但其实关系不大;
不过我们按照群的思路思考:


#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=;
int prime[MAXN];
bool vis[MAXN];
int n,cnt;
long long f[][];
int Prime(int );
int main()
{
int i,j,k;
long long ans=;
scanf("%d",&n);
cnt=Prime(n);
f[][]=;
for(i=;i<=cnt;i++)
for(j=;j<=n;j++){
f[i][j]+=f[i-][j];
for(k=prime[i];k<=j;k*=prime[i])
f[i][j]+=f[i-][j-k];
}
for(i=;i<=n;i++)
ans+=f[cnt][i];
printf("%lld",ans);
return ;
}
int Prime(int n){
int cnt=;
memset(vis,,sizeof(vis));vis[]=;
for(int i=;i<=n;i++){
if(!vis[i])
prime[++cnt]=i;
for(int j=;j<=cnt&&i*prime[j]<=n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
return cnt;
}
P1025[SCOI2009]游戏的更多相关文章
- SCOI2009游戏
1025: [SCOI2009]游戏 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1065 Solved: 673[Submit][Status] ...
- BZOJ 1025 [SCOI2009]游戏
1025: [SCOI2009]游戏 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1533 Solved: 964[Submit][Status][ ...
- BZOJ 1025: [SCOI2009]游戏( 背包dp )
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...
- 【BZOJ1025】[SCOI2009]游戏(动态规划)
[BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...
- bzoj千题计划116:bzoj1025: [SCOI2009]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...
- AC日记——[SCOI2009]游戏 bzoj 1025
[SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...
- 【bzoj1025】[SCOI2009]游戏
1025: [SCOI2009]游戏 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1987 Solved: 1289[Submit][Status] ...
- BZOJ_1025_[SCOI2009]游戏_DP+置换+数学
BZOJ_1025_[SCOI2009]游戏_DP+置换 Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按 顺序1 ...
- BZOJ1025: [SCOI2009]游戏
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
随机推荐
- iOS开发~制作同时支持armv7,armv7s,arm64,i386,x86_64的静态库.a以及 FrameWork 的创建
armv7,armv7s,arm64,i386,x86_64 详解 一.概要 平时项目开发中,可能使用第三方提供的静态库.a,如果.a提供方技术不成熟,使用的时候就会出现问题,例如: 在真机上编译报错 ...
- FlowPortal-BPM——管理员、功能的权限设置
一.管理员设置 管理工具→安全组→安全组名称→管理授权→[添加管理人员]→[设置管理人员权限] 二.访问功能权限设置 (1)模块访问权限 (2)访问控制→[在需要的文件夹下]新建子资源→[资源名称]. ...
- initializer_list
initializer_list是一种模板类型,定义initializer_list对象是,必须说明列表中所含元素的类型: initializer_list<Type> lst{a, b, ...
- GDB:从单线程调试到多线程调试(MFiX单步调试)
GDB:从单线程调试到多线程调试 1. 裸跑GDB 1.1 安装GDB sudo apt-get install gdb 1.2 编译程序 由于需要调试,因此编译的时候需要添加-g编译参数: 1.3 ...
- 【杂题】[LibreOJ 2541] 【PKUWC2018】猎人杀【生成函数】【概率与期望】
Description 猎人杀是一款风靡一时的游戏"狼人杀"的民间版本,他的规则是这样的: 一开始有 n个猎人,第 i 个猎人有仇恨度 wi.每个猎人只有一个固定的技能:死亡后必须 ...
- Monkey and Banana
Monkey and BananaTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 1、 小白带你入坑xamarin系列之环境搭建和准备
重点提示 由于xamarin发展更新很快 目前教程部分内容已经过时 请注意下载最新版本 2018.05.23 www.xamarin.com 1. 小白带你入坑xamarin系列之环境搭建和准备 ...
- javascript中childNodes与children的区别
1.childNodes:获取节点,不同浏览器表现不同: IE:只获取元素节点: 非IE:获取元素节点与文本节点: 解决方案:if(childNode.nodeName=="#text&qu ...
- Windows里安装wireshark或者ethereal工具(包括汉化破解)(图文详解)
不多说,直接上干货! https://www.wireshark.org/download.html 我这里,读取的是,来自于https://www.ll.mit.edu/ideval/data/19 ...
- solr7之solrJ的使用
solr7的官网API介绍 网页翻译的不是很准确,只能了解个大概,基本能获取如下信息: 一.构建和运行SolrJ应用程序 对于用Maven构建的项目, pom.xml配置: <dependenc ...