题意:给出a,b数组,区间上两种操作,给\(a[L,R]\)+1s,或者求\(\sum_{i=l}^{r}a_i/b_i\)

一看就知道是吉司机乱搞型线段树(低配版),暴力剪枝就好

维护区间a的最大值和b的最小值,如果存在相交的部分则证明可能产生新的贡献,

此时暴搜到叶子把可能的a置回0并加上贡献就好

然后疯狂TTTT

网上搜了一波题解好像说是会改变lazy的判断?(虽然觉得没有道理但是我认(怂)了

于是换一种策略,既然lazy依赖与a的最值,那我们尽量不碰它,改为b的值翻倍

然后过了

算学到了防止翻车的意识

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<ctime>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define println(a) printf("%lld\n",(ll)a)
using namespace std;
const int MAXN = 1e5 + 11;
const int MOD = 1e9+7;
typedef long long ll;
ll read(){
ll x = 0, f = 1; register char ch = getchar();
while (ch<'0' || ch>'9') { if (ch == '-')f = -1; ch = getchar(); }
while (ch >= '0'&&ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return x*f;
}
ll a[MAXN],b[MAXN];
struct ST{
#define lc o<<1
#define rc o<<1|1
ll mn[MAXN<<2],mx[MAXN<<2],cnt[MAXN<<2];
ll lazy[MAXN<<2];
void pu(int o){
mx[o]=max(mx[lc],mx[rc]);
mn[o]=min(mn[lc],mn[rc]);
cnt[o]=cnt[lc]+cnt[rc];
}
void build(int o,int l,int r){
lazy[o]=0;
if(l==r){
mn[o]=b[l];
mx[o]=0;
cnt[o]=0;
return;
}
int mid=l+r>>1;
build(lc,l,mid);
build(rc,mid+1,r);
pu(o);
}
void pd(int o){
if(lazy[o]){
mx[lc]+=lazy[o];
mx[rc]+=lazy[o];
lazy[lc]+=lazy[o];
lazy[rc]+=lazy[o];
lazy[o]=0;
}
}
void update(int o,int l,int r,int L,int R){
if(l==r){
mx[o]++;
while(mx[o]>=mn[o]) cnt[o]++,mn[o]+=b[l];
//while(mx[o]>=mn[o]) mx[o]-=mn[o],cnt[o]++;
return;
}
if(L<=l&&r<=R){
if(mx[o]+1<mn[o]){
mx[o]++;
lazy[o]++;
return;
}
}
int mid=l+r>>1;
pd(o);
if(L<=mid) update(lc,l,mid,L,R);
if(R>mid) update(rc,mid+1,r,L,R);
pu(o);
}
ll query(int o,int l,int r,int L,int R){
if(L<=l&&r<=R) return cnt[o];
pd(o);
int mid=l+r>>1;
ll ans=0;
if(L<=mid) ans+=query(lc,l,mid,L,R);
if(R>mid) ans+=query(rc,mid+1,r,L,R);
return ans;
}
}st;
int main(){
int n,m;
while(cin>>n>>m){
rep(i,1,n) b[i]=read();
st.build(1,1,n);
char str[666];
while(m--){
scanf("%s",str+1);
int l=read();
int r=read();
if(str[1]=='a')st.update(1,1,n,l,r);
else println(st.query(1,1,n,l,r));
}
}
return 0;
}

HDU - 6315 吉司机线段树的更多相关文章

  1. HDU 5306 吉司机线段树

    思路: 后面nlogn的部分是伪证... 大家可以构造数据证明是这是nlog^2n的啊~ 吉老司机翻车了 //By SiriusRen #include <cstdio> #include ...

  2. HDU - 5306 Gorgeous Sequence (吉司机线段树)

    题目链接 吉司机线段树裸题... #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f3 ...

  3. UVALive - 4108 SKYLINE (吉司机线段树)

    题目链接 题意:在一条直线上依次建造n座建筑物,每座建筑物建造完成后询问它在多长的部分是最高的. 比较好想的方法是用线段树分别维护每个区间的最小值mi和最大值mx,当建造一座高度为x的建筑物时,若mi ...

  4. BZOJ4355: Play with sequence(吉司机线段树)

    题意 题目链接 Sol 传说中的吉司机线段树??感觉和BZOJ冒险那题差不多,就是强行剪枝... 这题最坑的地方在于对于操作1,$C >= 0$, 操作2中需要对0取max,$a[i] > ...

  5. bzoj4355 Play with sequence(吉司机线段树)题解

    题意: 已知\(n\)个数字,进行以下操作: \(1.\)区间\([L,R]\) 赋值为\(x\) \(2.\)区间\([L,R]\) 赋值为\(max(a[i] + x, 0)\) \(3.\)区间 ...

  6. bzoj5312 冒险(吉司机线段树)题解

    题意: 已知\(n\)个数字,进行以下操作: \(1.\)区间\([L,R]\) 按位与\(x\) \(2.\)区间\([L,R]\) 按位或\(x\) \(3.\)区间\([L,R]\) 询问最大值 ...

  7. bzoj4695 最假女选手(势能线段树/吉司机线段树)题解

    题意: 已知\(n\)个数字,进行以下操作: \(1.\)给一个区间\([L,R]\) 加上一个数\(x\) \(2.\)把一个区间\([L,R]\) 里小于\(x\) 的数变成\(x\) \(3.\ ...

  8. HDU-DuoXiao第二场hdu 6315 Naive Operations 线段树

    hdu 6315 题意:对于一个数列a,初始为0,每个a[ i ]对应一个b[i],只有在这个数字上加了b[i]次后,a[i]才会+1. 有q次操作,一种是个区间加1,一种是查询a的区间和. 思路:线 ...

  9. 杭电多校第二场 hdu 6315 Naive Operations 线段树变形

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

随机推荐

  1. [Training Video - 1] [Introduction to Web services]

    What is a web service? http://webservicex.net/ws/default.aspx WebService是一种跨编程语言和跨操作系统平台的远程调用技术. 跨编程 ...

  2. php 伪协议探究

    0x01序 PHP伪协议探究 php中支持的伪协议有下面这么多 file:// — 访问本地文件系统 http:// — 访问 HTTP(s) 网址 ftp:// — 访问 FTP(s) URLs p ...

  3. select for update [nowait]

    Syntax The NOWAIT and WAIT clauses let you tell the database how to proceed if the SELECT statement ...

  4. 20169205实验四 Android程序设计

    20169205实验四 Android程序设计 实验内容及步骤 (一)第一个android studio项目 android studio与eclipse的传统安卓开发有一些不同之处 android ...

  5. [转]Newtonsoft.Json 序列化和反序列化 时间格式

    本文转自:http://www.cnblogs.com/litian/p/3870975.html 1.JSON序列化 string JsonStr= JsonConvert.SerializeObj ...

  6. Baidu Map开发示例

    1.获取SHA1码 在Eclipse中点击“Windows”----->“Preferences” ----->“Android” ----->“Build”如下图: 打开“Win+ ...

  7. ViewPage实现无限轮播画廊效果

    1. 效果图 2. 布局文件 主要使用的 android:clipChildren的意思:是否限制子View在其范围内.再父布局和viewpager中设置该属性  ,要显示三个界面 ,还要设置marg ...

  8. mysql多个TimeStamp设置(转)

    timestamp设置默认值是Default CURRENT_TIMESTAMP timestamp设置随着表变化而自动更新是ON UPDATE CURRENT_TIMESTAMP 但是由于 一个表中 ...

  9. TSQL--验证身份证是否有效

    /****** Object: UserDefinedFunction [dbo].[udf_IsvalidIDCard] Script Date: 02/27/2014 16:03:20 ***** ...

  10. Devexpress Winform初学笔记

    作为一个软件开发人员来说,得有自己的博客,可以用来ZB,哈哈!玩笑话..... 写博客并不仅仅是用来ZB的,他可以用来记录你在技术道路上探索遇到的坎,当然也有提高逼格的次然因素啦!小弟刚入博客园不久, ...