E - Oulipo

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:

Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…

Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.

So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A''B''C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with the word W, a string over {'A''B''C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
  • One line with the text T, a string over {'A''B''C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.

Sample Input

3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN

Sample Output

1
3
0

hash_AC代码:

/*
Problem: 3461 User: bbsh
Memory: 5296K Time: 110MS
Language: G++ Result: Accepted
*/
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e6+;
typedef int i64;
i64 S,chk,p,P,hash_key[N];
char s1[N],s2[N];
int cas,l1,l2,ans;
inline i64 fpow(i64 a,i64 p){
i64 res=;
for(;p;p>>=,a=a*a) if(p&) res=res*a;
return res;
}
inline void get_s2_key(){
p=fpow(P,l2);S=;
for(int i=;i<=l2;i++) S=S*P+s2[i]-'A';
}
inline void get_s1_key(){
hash_key[]=;
for(int i=;i<=l1;i++) hash_key[i]=hash_key[i-]*P+s1[i]-'A';
}
inline i64 query(int x,int y){
return hash_key[y]-hash_key[x-]*p;
}
int main(){
P=;//prime_num
for(scanf("%d",&cas);cas--;){
scanf("%s%s",s2+,s1+);ans=;
l1=strlen(s1+);l2=strlen(s2+);
get_s2_key();
get_s1_key();
for(int i=l2;i<=l1;i++){
chk=query(i-l2+,i);
if(chk==S) ans++;
}
printf("%d\n",ans);
}
return ;
}

KMP_AC代码:

/*
Problem: 3461 User: bbsh
Memory: 1424K Time: 110MS
Language: G++ Result: Accepted
Source Code
*/
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e6+;
char s1[N],s2[N];
int cas,l1,l2,fail[N];
void get_next(){
int p=;fail[]=;
for(int i=;i<=l2;i++){
while(p>&&s2[i]!=s2[p+]) p=fail[p];
if(s2[i]==s2[p+]) p++;
fail[i]=p;
}
}
void kmp(){
int p=,ans=;
for(int i=;i<=l1;i++){
while(p>&&s1[i]!=s2[p+]) p=fail[p];
if(s1[i]==s2[p+]) p++;
if(p==l2) ans++,p=fail[p];
}
printf("%d\n",ans);
}
int main(){
for(scanf("%d",&cas);cas--;){
scanf("%s%s",s2+,s1+);
l1=strlen(s1+);l2=strlen(s2+);
get_next();
kmp();
}
return ;
}

附KMP算法详细流程讲解

  移步shenben's documents system

POJ 3461 Oulipo[附KMP算法详细流程讲解]的更多相关文章

  1. poj 3461 - Oulipo 经典kmp算法问题

    2017-08-13 19:31:47 writer:pprp 对kmp算法有了大概的了解以后,虽然还不够深入,但是已经可以写出来代码,(可以说是背会了) 所以这道题就作为一个模板,为大家使用吧. 题 ...

  2. POJ 3461 Oulipo(——KMP算法)

    Description The French author Georges Perec (1936–1982) once wrote a book, La disparition, without t ...

  3. POJ 3461 Oulipo 【KMP统计子串数】

    传送门:http://poj.org/problem?id=3461 Oulipo Time Limit: 1000MS   Memory Limit: 65536K Total Submission ...

  4. poj 3461 Oulipo,裸kmp

    传送门 Oulipo Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32373   Accepted: 13093 Desc ...

  5. poj 3461 Oulipo(KMP模板题)

    Oulipo Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 36903   Accepted: 14898 Descript ...

  6. POJ 3461 Oulipo(KMP裸题)

    Description The French author Georges Perec (1936–1982) once wrote a book, La disparition, without t ...

  7. poj 3461 Oulipo(kmp统计子串出现次数)

    题意:统计子串出现在主串中的次数 思路:典型kmp #include<iostream> #include<stdio.h> #include<string.h> ...

  8. poj 3461 Oulipo(KMP)

    Oulipo Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 49378   Accepted: 19617 Descript ...

  9. POJ 3461 Oulipo

      E - Oulipo Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

随机推荐

  1. UVALive-4670 AC自动机入门题 求出现次数最多的子串

    /** 链接:http://vjudge.net/problem/UVALive-4670 详见lrj训练指南P216 */ #include<bits/stdc++.h> using n ...

  2. MVC教程三:URL匹配

    1.使用{parameter}做模糊匹配 {parameter}:花括弧加任意长度的字符串,字符串不能定义成controller和action字母.默认的就是模糊匹配. 例如:{admin}. usi ...

  3. Entity Framework应用:管理并发

    理解并发 并发管理解决的是允许多个实体同时更新,实际上这意味着允许多个用户同时在相同的数据上执行多个数据库操作.并发是在一个数据库上管理多个操作的一种方式,同时遵守了数据库操作的ACID属性(原子性. ...

  4. JetBrains PyCharm 4.0.4 key

    用户名 yueting3527 注册码 ===== LICENSE BEGIN ===== 93347-12042010 00001FMHemWIs"6wozMZnat3IgXKXJ 2!n ...

  5. (四)Qt实现自定义模型基于QAbstractTableModel (一般)

    Qt实现自定义模型基于QAbstractTableModel 两个例子 例子1代码 Main.cpp #include <QtGui> #include "currencymod ...

  6. 如果分配给命令的连接位于本地挂起事务中,ExecuteNonQuery 要求命令拥有事务。命令的 Transaction 属性尚未初始化

    DbConnection dbc = database.CreateConnection(); DbTransaction dbtt = null; try { dbc.Open(); dbtt = ...

  7. 使用ffmpeg实现合并多个音频为一个音频的方法

    使用ffmpeg实现合并多个音频为一个音频的方法可以使用ffmpeg的filter功能来进行这个操作,而且效果很好amerge也可以实 使用ffmpeg实现合并多个音频为一个音频的方法 可以使用ffm ...

  8. Asakura的魔法世界

    Font Size:Aa Aa Aa Description Asakura存在于一个魔法世界中.有一天,Asakura在一条魔法通道里偷懒,突然接到一个紧急任务,要高速赶往还有一条通道b去. 我们把 ...

  9. opengl的矩阵理解

    原文链接:http://blog.csdn.net/byhuang/article/details/1476199 矩阵真的是一个很神奇的数学工具, 虽然单纯从数学上看, 它并没有什么特别的意义, 但 ...

  10. iOS 数据压缩与解压

    转自: http://blog.csdn.net/dkq972958298/article/details/53321804 在实际开发中,我们经常要对比较大的数据进行压缩后再上传服务器,下面是我在项 ...