BZOJ4350: 括号序列再战猪猪侠【区间DP】
Description
括号序列与猪猪侠又大战了起来。
众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号序列S合法,当且仅当:
1.( )是一个合法的括号序列。
2.若A是合法的括号序列,则(A)是合法的括号序列。
3.若A,B是合法的括号序列,则AB是合法的括号序列。
我们考虑match[i]表示从左往右数第i个左括号所对应的是第几个右括号,现在他得到了一个长度为2n的括号序列,给了你m个信息,第i个信息形如ai,bi,表示match[ai]<match[bi],要你还原这个序列。
但是你发现这个猪猪侠告诉你的信息,可能有多个括号序列合法;甚至有可能告诉你一个不存在合法括号序列的信息!
你最近学了取模运算,你想知道答案对998244353(7172^23+1)取模的结果,这个模数是一个质数。
Input
第一行一个正整数T,T< = 5,表示数据组数。
对于每组数据,第一行一个n,m,n表示有几个左括号,m表示信息数。
接下来m行,每行两个数ai,bi,1< = ai,bi< = n。
Output
对于每组数据,输出一个数表示答案。
Sample Input
5
1 0
5 0
3 2
1 2
2 3
3 2
2 1
2 3
3 3
1 2
2 3
3 1
Sample Output
1
42
1
2
0
HINT
对于前两个点,是卡特兰数的情况。
对于第三个点,合法的情况只可能是 ()()()。
对于第四个点,合法情况可能是 (()()) 或者 (())()
对于第五个点,由于拓扑关系形成了环,显然无解。
对于 100% 的数据,保证 n < = 300
思路
考虑区间DP
\(dp_{l,r}\)表示满足\([l,r]\)的左区间满足条件的方案数
然后你每次考虑在\([l+1,r]\)的个区间中加入l这个括号
有三种情况:
- 全部包含后面
- 和后面相离
- 把后面分成两半
然后发现我们要处理出两个区间分离没有任何冲突的方案数
这个东西可以对match的二维矩阵做一个前缀和sum
然后\([l_1,r_1]\)\([l_2,r_2]\)的冲突个数就是\(l_1,r_1\)~\(l_2, r_2\)子矩阵的和
#include<bits/stdc++.h>
using namespace std;
const int N = 310;
const int Mod = 998244353;
int f[N][N], p[N][N], q[N][N], sum[N][N];
int a[N][N], b[N][N];
int n, m;
int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
}
int mul(int a, int b) {
return 1ll * a * b % Mod;
}
int calc(int x1, int y1, int x2, int y2) {
return sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1];
}
void solve() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
f[i][j] = sum[i][j] = 0;
bool bk = 0;
for (int i = 1; i <= m; i++) {
int x, y; scanf("%d %d", &x, &y);
sum[x][y] = 1;
if (x == y) bk = 1;
}
if (bk) {
printf("0\n");
return;
}
for (int i = 1; i <= n; i++) {
f[i][i] = 1;
for (int j = 1; j <= n; j++) {
sum[i][j] += sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1];
}
}
for (int len = 2; len <= n; len++) {
for (int l = 1; l + len - 1 <= n; l++) {
int r = l + len - 1;
if (!calc(l, l + 1, l, r)) f[l][r] = add(f[l][r], f[l + 1][r]);
if (!calc(l + 1, l, r, l)) f[l][r] = add(f[l][r], f[l + 1][r]);
for (int k = l + 1; k <= r - 1; k++) {
if (!calc(l, l + 1, l, k) && !calc(k + 1, l, r, k))
f[l][r] = add(f[l][r], mul(f[l + 1][k], f[k + 1][r]));
}
}
}
printf("%d\n", f[1][n]);
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
int T; scanf("%d", &T);
while (T--) solve();
return 0;
}
BZOJ4350: 括号序列再战猪猪侠【区间DP】的更多相关文章
- 2018.10.25 bzoj4350: 括号序列再战猪猪侠(区间dp)
传送门 区间dp好题. 首先我们并不用把右括号拿进来一起dpdpdp,而是直接用左括号来dpdpdp. 然后定义状态fi,jf_{i,j}fi,j表示区间[l,r][l,r][l,r]的合法方案数. ...
- BZOJ4350: 括号序列再战猪猪侠
Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个合法的括号序列. 2.若A是合法的括号序列 ...
- [BZOJ 4350]括号序列再战猪猪侠 题解(区间DP)
[BZOJ 4350]括号序列再战猪猪侠 Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个 ...
- UVA1626 括号序列 Brackets sequence(区间dp)
题目传送门(洛谷) 题目传送门(UVA) 解题思路 很显然是一个区间dp,当然记忆化搜索完全可以AC,这里说一下区间dp. 区间dp的重要特征就是需要枚举中间节点k 看一看这道题,用f[i][j] ...
- NYOJ15|括号匹配(二)|区间DP|Elena
括号匹配(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:6 描述 给你一个字符串,里面只包含"(",")","[&qu ...
- 「LuoguP1430」 序列取数(区间dp
题目描述 给定一个长为n的整数序列(n<=1000),由A和B轮流取数(A先取).每个人可从序列的左端或右端取若干个数(至少一个),但不能两端都取.所有数都被取走后,两人分别统计所取数的和作为各 ...
- 区间dp提升复习
区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...
- 浅谈区间DP的解题时常见思路
一.区间DP解题时常见思路 如果题目中答案满足: 大的区间的答案可以由小的区间答案组合或加减得到 大的范围可以由小的范围代表 数据范围较小 我们这时可以考虑采用区间DP来解决. 那么常见的解法有两种: ...
- HDU 1141---Brackets Sequence(区间DP)
题目链接 http://poj.org/problem?id=1141 Description Let us define a regular brackets sequence in the fol ...
随机推荐
- 24UDP通信
使用Qt提供的QUdpSocket进行UDP通信.在UDP方式下,客户端并不与服务器建立连接,它只负责调用发送函数向服务器发送数据.类似的服务器也不从客户端接收连接,只负责调用接收函数,等待来自客户端 ...
- CCPC-Wannafly Winter Camp Day5 (Div2, onsite)
Replay: Dup4: 时间复杂度算不对? 一点点思路不经过验证就激动的要死? 浪费自己一个小时还浪费别人一个小时? 对1e3不敏感? 1e3 * 1e3是多少? 模拟建边跑dp不写非要写个大模拟 ...
- 466E - Information Graph 巧妙的判断祖先于孩子的关系
这题说的是给了一个公司员工100000 然后现在又3种操作第一种将y置为x的父亲,第二种操作将文件给第x个人签他签完给他的上司签,一直到没有上司为止,第三种操作问x是否签了第i份文件,然后 我们只要直 ...
- Python面试题之Python反射详解
0x00 前言 反射,可以理解为利用字符串的形式去对象中操作成员属性和方法 反射的这点特性让我联想到了exec函数,也是把利用字符串的形式去让Python解释器去执行命令 Python Version ...
- Python3.x:使用PyMysql连接Mysql数据库
Python3.x:使用PyMysql连接Mysql数据库 Python3.x完全不向前兼容,导致Python2.x中可以正常使用的库,到了Python3就用不了: 比如说mysqldb,目前MySQ ...
- 使用cronolog工具给tomcat进行日志切割
关于cronolog的用法查看:https://www.freebsd.org/cgi/man.cgi?query=cronolog&apropos=0&sektion=0&m ...
- 【转载】通过JSFL让Flash Professional CS4或CS5拥有批量FLA导出SVG的功能
近期一个项目要求博主爱吾所爱(爱生活=爱技术)将 所有的.fla源文件里的图形都转为.svg矢量图,经常一番搜索之后,发现新版本的Flash Professional CC已经有此功能,但无奈我等用的 ...
- ffmpeg_资料_01
1. 用ffmpeg制作推流工具,实现推流系统声音和桌面到rtmp服务器-CSDN论坛-CSDN.NET-中国最大的IT技术社区.html http://bbs.csdn.net/topics/392 ...
- Qt570_CentOS64x64_01
ZC: 其实 主要是要安装 OpenGL,具体看"3"... ... 1.运行 "/opt/Qt5.7.0/Tools/QtCreator/bin/qtcreator&q ...
- Spring IOC和IOC容器
IOC的核心理念即是控制反转.将对依赖的控制从具体业务对象手中转交到平台或框架中,需要的时候再由平台或框架注入到具体业务对象中.可以说依赖注入是控制反转的实现方式. IOC的优点: 降低代码耦合度 减 ...