10.1 Matrix Factorizations

  1. A = LU = (Lower triangular L with 1's on the diagonal)(Upper triangular U with pivots on the diagonal)

    requirements : No row exchanges as Gaussian elimination reduces square A to U.

  2. A=LDU=(Lower triangular L with 1's on the diagonal)(pivot matrix D is diagonal)(Upper triangular U with 1's on the diagonal)

    requirements: No row exchanges.The pivots in D are divided out to leave 1's on the diagonal of U. If A is symmetric the U is \(L^T\) and \(A=LDL^T\).

  3. PA=LU

    requirements: permutation matrix P to avoid zeros in the pivot positions and to do all of the row exchanges on A in advances. A is invertible. Then P,L,U are invertible.

  4. EA=R (m by m invertible E)(any m by n matrix A) = rref(A)

    requirements : None! The reduced row echelon form R has r pivot rows and pivot columns, containing the identity matrix. The last m-r rows of E are a basis for the left nullspace of A; they multiply A to give m-r zero rows in R. The first r columns of \(E^{-1}\) are a basis for the column space of A.

  5. S=\(C^TC\)=(Lower triangular)(Upper triangular) with \(\sqrt{D}\) on both diagonals

    requirements: S is symmetric and positive definite (all n pivots in D are positive). This Cholesky factorization C=chol(S) has \(C^T=L\sqrt{D}\) , so \(S=C^TC=LDL^T\).

  6. \(A=QR\) = (orthonormal columns in Q) (upper triangular R)

    requirements: A has independent columns. Those are orthogonalized in Q by the Gram-Schmidt or Householder process.If A is square the \(Q^{-1}=Q^{T}\).

  7. \(A=X\Lambda X^{-1}\) = (eigenvectors in X) (eigenvalues in \(\Lambda\))(left eigenvectors in \(X^{-1}\))

    requirements: A must have n linearly independent eigenvectors.

  8. S = \(Q\Lambda Q^{-1}\)=\(Q\Lambda Q^T\) = (orthogonal matrix Q)(real eigenvalue matrix \(\Lambda\))(\(Q^T \ is \ Q^{-1}\))

    requirements: S is real and symmetric: \(S^T=S\). This is the Spectral Theorem.

  9. A = \(B J B^{-1}\) = (generalized eigenvectors in B)(Jordan blocks in J)(\(B^{-1}\))

    requirements: A is any square matrix. This Jordan form J has a block for each independent eigenvector of A . Every block has only one eigenvalue.

  10. A = \(U\Sigma V^T\) = (orthogonal U is \(m \times m\))(\(m \times n\) singular value matrix \(\sigma_1, \sigma_2, ..., \sigma_r\) on its diagonal)(orthogonal V is \(n \times n\))

    requirements: None. This Singular Value Decomposition(SVD) has the eigenvectors of \(AA^T\) in U and eigenvectors of \(A^TA\) in V; \(\sigma_i=\sqrt{\lambda_i(A^TA)}=\sqrt{\lambda_i(AA^T)}\); Those singular values are \(\sigma_1 \geq \sigma_2 \cdots \geq \sigma_r >0\). By column-row multiplication:

    \(A=U_{r}\Sigma V_{r}^T=\sigma_1 u_1 v_1^{T} + \cdots + \sigma_r u_r v_r^{T}\). If A is symmetric positive definite the \(U=V=Q\) and \(\Sigma = \Lambda\) and S=$Q\Lambda Q^T $

  11. \(A^{+}=V\Sigma^{+} U^T\) = (orthogonal V is \(n \times n\))(\(n \times m\) pseudoinverse of \(\Sigma\) with \(1/\sigma_1,\cdots,1/\sigma_r\) on diagonal)(orthogonal \(m \times m\))

    requirements: None. The pseudoinverse \(A^{+}\) has \(A^{+}A\)= projection onto row space of A and \(AA^{+}\)=projection onto column space. \(A^{+}=A^{-1}\) if A is invertible. The shortest least-squares solution to \(Ax=b\) is \(x^{+}=A^{+}b\). This solves \(A^{T}Ax^{+}=A^{T}b\).

  12. A = \(QS\) = (orthogonal matrix Q)(symmetric positive definite matrix S)

    requirements: A is invertible. This polar decomposition has \(S^2=A^TA\). The factor S is semidefinite if A is singular. The reverse polar decomposition A=KQ has \(K^2=AA^T\). Both have \(Q=UV^T\) from SVD.

  13. A = \(U\Lambda U^{-1}\) = (unitary U)(eigenvalue matrix \(\Lambda\))(\(U^{-1}\) which is \(U^{H}=\overline{U}^T\))

    requirements: A is normal. \(AA^H=A^HA\). Its orthonormal (and possibly complex) eigenvectors are the columns of U. Complex \(\lambda's\) unless \(S=S^H\): Hermitian case.

  14. A = \(QTQ^{-1}\) = (unitary Q)(triangular T with \(\lambda's\) on diagonal)(\(Q^{-1}=Q^H\))

    requirements: Schur trianularization of any square A.There is a matrix Q with orthonormal columns that makes \(Q^{-1}AQ\) triangular.

  15. \(F_n = \left [ \begin{matrix} I&D \\ I&-D \end{matrix}\right] \left [ \begin{matrix} F_{n/2}& \\ &F_{n/2} \end{matrix}\right] \left [ \begin{matrix} even-odd \\ permutation \end{matrix}\right]\)= one step of the recursive FFT.

    requirements: \(F_n\) = Fourier matrix with entries \(w^{jk}\) where \(w^n=1\) : \(F_n\overline{F_n}=nI\). D has \(1, w, ..., w^{n/2 - 1}\) on its diagonal. For \(n=2^l\) the Fast Fourier Transform will compute \(F_nx\) with only \(1/2 nl=1/2 nlog_2n\) multiplications form \(l\) stages of D's.

10.2 Six Great Theorems of Linear Algebra

Dimension Theorem : All bases for a vector space have the same number of vectors.

Counting Theorem: Dimension for column space + dimension of nullspace = number of columns.

Rank Theorem: Dimension of column space = dimension of row space = rank.

Fundamental Theorem:The row space and nullspace of A are orthogonal complements in \(R^n\); The column space and left nullspace of A are orthogonal complements in \(R^m\)

SVD: There are orthonormal bases (\(v's\) and \(u's\) for the row and column spaces) so that \(Av_i=\sigma_iu_i\).

Spectral Theorem:If \(A^T=A\) there are orthonormal \(q's\) so that \(Aq_i=\lambda_iq_i\) and \(A=Q\Lambda Q^T\).

10.3 Nonsingular VS Singular

Nonsingular --- Singular

A is invertible --- A is not invertible

The columns are independent --- The columns are dependent

The rows are independent --- The rows are dependent

The determinant is not zero --- The determinant is zero

Ax = 0 has one solution x=0 --- Ax=0 has infinitely many solutions

Ax=b has one solution \(x=A^{-1}b\) --- Ax=b has no solution or infinitely many

A has n pivots (nonzero) --- A has r< n pivots

A has full rank r=n --- A has rank r < n

The reduced row echelon form is R=I --- R has at least one zero row

The column space is all of \(R^m\) --- The column space has dimension r<m

The row space is all of \(R^n\) --- The row space has dimension r<n

All eigenvalues are nonzero --- Zero is an eigenvalues of A

\(A^TA\) is symmetric positive definite --- \(A^TA\) is only semidefinite

A has n (positive) singular values --- A has r < n singular values

10. Conclusion的更多相关文章

  1. 《In Search of an Understandable Consensus Algorithm》翻译

    Abstract Raft是一种用于管理replicated log的consensus algorithm.它能和Paxos产生同样的结果,有着和Paxos同样的性能,但是结构却不同于Paxos:它 ...

  2. Jackson Annotation Examples

    1. Overview In this article, we’ll do a deep dive into Jackson Annotations. We’ll see how to use the ...

  3. 论文泛读:Click Fraud Detection: Adversarial Pattern Recognition over 5 Years at Microsoft

    这篇论文非常适合工业界的人(比如我)去读,有很多的借鉴意义. 强烈建议自己去读. title:五年微软经验的点击欺诈检测 摘要:1.微软很厉害.2.本文描述了大规模数据挖掘所面临的独特挑战.解决这一问 ...

  4. Building a Non-blocking TCP server using OTP principles

    转自:https://erlangcentral.org/wiki/index.php/Building_a_Non-blocking_TCP_server_using_OTP_principles ...

  5. springmvc 标签

    https://www.baeldung.com/spring-mvc-form-tags     1. Overview In the first article of this series we ...

  6. 50 years of Computer Architecture: From the Mainframe CPU to the Domain-Specific TPU and the Open RISC-V Instruction Set

    1.1960年代(大型机) IBM发明了具有二进制兼容性的ISA——System/360,可以兼容一系列的8到64位的硬件产品,而不必更换操作系统.这是通过微编程实现的,每个计算机模型都有各自的ISA ...

  7. 使用OTP原则构建一个非阻塞的TCP服务器

    http://erlangcentral.org/wiki/index.php/Building_a_Non-blocking_TCP_server_using_OTP_principles CONT ...

  8. A Case for Lease-Based, Utilitarian Resource Management on Mobile Devices

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. Abstract 移动应用程序已经成为我们日常生活中不可或缺的一部分,但许多应用程序的设 ...

  9. 【转载】解决Windows 10 局域网内共享的问题

    问题: 小米盒子,iPhone (OS 10.2) 无法访问 Win 1o共享 解决方案: 原文链接 http://www.dedoimedo.com/computers/windows-10-net ...

  10. Watch out for these 10 common pitfalls of experienced Java developers & architects--转

    原文地址:http://zeroturnaround.com/rebellabs/watch-out-for-these-10-common-pitfalls-of-experienced-java- ...

随机推荐

  1. shell脚本的基本使用

    本文是对菜鸟教程 shell编程原文 的总结并记录 如有侵权 联系删除 简介 说明: Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.这个应用程序提供了一个界面,用户通过这 ...

  2. Java final 关键字使用

    1 package com.bytezreo.finaltest; 2 3 /** 4 * 5 * @Description final 关键字使用 6 * @author Bytezero·zhen ...

  3. 微信小程序开发:页面分享卡片、风格选择、通道启用等可配置

    上文说到,我们部署了定时任务,但是有个地方忘记在上文写了,这里补上,就是定时任务的超时时间问题,超时时间有7200秒: 我们改成7100秒: 再把云函数调用的云对象的超时时间也改下: 超时时间多一点, ...

  4. autohotkey 设置快捷键 设置光标位置 (ctrl + alt + Numpad0)

    autohotkey 设置快捷键 设置光标位置 (ctrl + alt + Numpad0) 原因 3个屏幕,所以鼠标设置的灵敏度非常高,经常就找不到鼠标在哪了. 设置个快捷键,让鼠标每次都初始化一个 ...

  5. use shell scrpit to jlink download bin file

    一 JLINK 下载 JLINK作为一个arm的调试工具,是很多基于arm芯片无法绕过去的调试和下载工具.这里有一个问题,就是该工具链接和使用需要的命令特别多,假如不做成脚本,会浪费很多时间,笔者花了 ...

  6. Maven项目不同jar包相同类名的引用问题

    本文简单记录下一个小问题 问题描述: 在一个Maven项目中,引用了两个jar包,其中两个jar包中,都含有个相同类(包名也相同),这个时候代码里使用该类,出现引用失败的问题 如下图所示,展开两个ja ...

  7. struts1之global-forwards

    当你的某个转发要经常用,并且要携带某些数据(request)的时候用全局转发,也就是global-forwards,例如我们在分页的时候,或者得到数据列表的时候.. ForwardAction呢,是为 ...

  8. Unity3D 横板跳跃游戏半成品demo源代码

    项目介绍: 基于B站的 Unity3D新手教程进行学习制作,但视频中的做法有很多BUG,此demo是经过优化,几乎修复了教程里带的所有bug. 实现了基本的功能比如:怪物ai,开始菜单,设置菜单,地图 ...

  9. 为什么数字化未来取决于3D实时渲染

    什么是实时3D? 如果你曾经看过2D图纸并将3D产品可视化,你就会知道这是多么具有挑战性.实时3D允许观众观看3D图像或场景并与之交互,例如在视频游戏中,这些图像或场景看起来是实时移动的. 实时3D成 ...

  10. 使用Servlet实现单文件上传

    一位朋友最近在学习JavaWeb开发,开始学习单文件上传操作,他自己尝试着去网上看一些博客教程,能明白其中大概的思路, 还是让我和他说说,如何实现单文单件上传功能.我和他说了一下大致的思路与操作步骤, ...