10. Conclusion
10.1 Matrix Factorizations
A = LU = (Lower triangular L with 1's on the diagonal)(Upper triangular U with pivots on the diagonal)
requirements : No row exchanges as Gaussian elimination reduces square A to U.
A=LDU=(Lower triangular L with 1's on the diagonal)(pivot matrix D is diagonal)(Upper triangular U with 1's on the diagonal)
requirements: No row exchanges.The pivots in D are divided out to leave 1's on the diagonal of U. If A is symmetric the U is \(L^T\) and \(A=LDL^T\).
PA=LU
requirements: permutation matrix P to avoid zeros in the pivot positions and to do all of the row exchanges on A in advances. A is invertible. Then P,L,U are invertible.
EA=R (m by m invertible E)(any m by n matrix A) = rref(A)
requirements : None! The reduced row echelon form R has r pivot rows and pivot columns, containing the identity matrix. The last m-r rows of E are a basis for the left nullspace of A; they multiply A to give m-r zero rows in R. The first r columns of \(E^{-1}\) are a basis for the column space of A.
S=\(C^TC\)=(Lower triangular)(Upper triangular) with \(\sqrt{D}\) on both diagonals
requirements: S is symmetric and positive definite (all n pivots in D are positive). This Cholesky factorization C=chol(S) has \(C^T=L\sqrt{D}\) , so \(S=C^TC=LDL^T\).
\(A=QR\) = (orthonormal columns in Q) (upper triangular R)
requirements: A has independent columns. Those are orthogonalized in Q by the Gram-Schmidt or Householder process.If A is square the \(Q^{-1}=Q^{T}\).
\(A=X\Lambda X^{-1}\) = (eigenvectors in X) (eigenvalues in \(\Lambda\))(left eigenvectors in \(X^{-1}\))
requirements: A must have n linearly independent eigenvectors.
S = \(Q\Lambda Q^{-1}\)=\(Q\Lambda Q^T\) = (orthogonal matrix Q)(real eigenvalue matrix \(\Lambda\))(\(Q^T \ is \ Q^{-1}\))
requirements: S is real and symmetric: \(S^T=S\). This is the Spectral Theorem.
A = \(B J B^{-1}\) = (generalized eigenvectors in B)(Jordan blocks in J)(\(B^{-1}\))
requirements: A is any square matrix. This Jordan form J has a block for each independent eigenvector of A . Every block has only one eigenvalue.
A = \(U\Sigma V^T\) = (orthogonal U is \(m \times m\))(\(m \times n\) singular value matrix \(\sigma_1, \sigma_2, ..., \sigma_r\) on its diagonal)(orthogonal V is \(n \times n\))
requirements: None. This Singular Value Decomposition(SVD) has the eigenvectors of \(AA^T\) in U and eigenvectors of \(A^TA\) in V; \(\sigma_i=\sqrt{\lambda_i(A^TA)}=\sqrt{\lambda_i(AA^T)}\); Those singular values are \(\sigma_1 \geq \sigma_2 \cdots \geq \sigma_r >0\). By column-row multiplication:
\(A=U_{r}\Sigma V_{r}^T=\sigma_1 u_1 v_1^{T} + \cdots + \sigma_r u_r v_r^{T}\). If A is symmetric positive definite the \(U=V=Q\) and \(\Sigma = \Lambda\) and S=$Q\Lambda Q^T $
\(A^{+}=V\Sigma^{+} U^T\) = (orthogonal V is \(n \times n\))(\(n \times m\) pseudoinverse of \(\Sigma\) with \(1/\sigma_1,\cdots,1/\sigma_r\) on diagonal)(orthogonal \(m \times m\))
requirements: None. The pseudoinverse \(A^{+}\) has \(A^{+}A\)= projection onto row space of A and \(AA^{+}\)=projection onto column space. \(A^{+}=A^{-1}\) if A is invertible. The shortest least-squares solution to \(Ax=b\) is \(x^{+}=A^{+}b\). This solves \(A^{T}Ax^{+}=A^{T}b\).
A = \(QS\) = (orthogonal matrix Q)(symmetric positive definite matrix S)
requirements: A is invertible. This polar decomposition has \(S^2=A^TA\). The factor S is semidefinite if A is singular. The reverse polar decomposition A=KQ has \(K^2=AA^T\). Both have \(Q=UV^T\) from SVD.
A = \(U\Lambda U^{-1}\) = (unitary U)(eigenvalue matrix \(\Lambda\))(\(U^{-1}\) which is \(U^{H}=\overline{U}^T\))
requirements: A is normal. \(AA^H=A^HA\). Its orthonormal (and possibly complex) eigenvectors are the columns of U. Complex \(\lambda's\) unless \(S=S^H\): Hermitian case.
A = \(QTQ^{-1}\) = (unitary Q)(triangular T with \(\lambda's\) on diagonal)(\(Q^{-1}=Q^H\))
requirements: Schur trianularization of any square A.There is a matrix Q with orthonormal columns that makes \(Q^{-1}AQ\) triangular.
\(F_n = \left [ \begin{matrix} I&D \\ I&-D \end{matrix}\right] \left [ \begin{matrix} F_{n/2}& \\ &F_{n/2} \end{matrix}\right] \left [ \begin{matrix} even-odd \\ permutation \end{matrix}\right]\)= one step of the recursive FFT.
requirements: \(F_n\) = Fourier matrix with entries \(w^{jk}\) where \(w^n=1\) : \(F_n\overline{F_n}=nI\). D has \(1, w, ..., w^{n/2 - 1}\) on its diagonal. For \(n=2^l\) the Fast Fourier Transform will compute \(F_nx\) with only \(1/2 nl=1/2 nlog_2n\) multiplications form \(l\) stages of D's.
10.2 Six Great Theorems of Linear Algebra
Dimension Theorem : All bases for a vector space have the same number of vectors.
Counting Theorem: Dimension for column space + dimension of nullspace = number of columns.
Rank Theorem: Dimension of column space = dimension of row space = rank.
Fundamental Theorem:The row space and nullspace of A are orthogonal complements in \(R^n\); The column space and left nullspace of A are orthogonal complements in \(R^m\)
SVD: There are orthonormal bases (\(v's\) and \(u's\) for the row and column spaces) so that \(Av_i=\sigma_iu_i\).
Spectral Theorem:If \(A^T=A\) there are orthonormal \(q's\) so that \(Aq_i=\lambda_iq_i\) and \(A=Q\Lambda Q^T\).
10.3 Nonsingular VS Singular
Nonsingular --- Singular
A is invertible --- A is not invertible
The columns are independent --- The columns are dependent
The rows are independent --- The rows are dependent
The determinant is not zero --- The determinant is zero
Ax = 0 has one solution x=0 --- Ax=0 has infinitely many solutions
Ax=b has one solution \(x=A^{-1}b\) --- Ax=b has no solution or infinitely many
A has n pivots (nonzero) --- A has r< n pivots
A has full rank r=n --- A has rank r < n
The reduced row echelon form is R=I --- R has at least one zero row
The column space is all of \(R^m\) --- The column space has dimension r<m
The row space is all of \(R^n\) --- The row space has dimension r<n
All eigenvalues are nonzero --- Zero is an eigenvalues of A
\(A^TA\) is symmetric positive definite --- \(A^TA\) is only semidefinite
A has n (positive) singular values --- A has r < n singular values
10. Conclusion的更多相关文章
- 《In Search of an Understandable Consensus Algorithm》翻译
Abstract Raft是一种用于管理replicated log的consensus algorithm.它能和Paxos产生同样的结果,有着和Paxos同样的性能,但是结构却不同于Paxos:它 ...
- Jackson Annotation Examples
1. Overview In this article, we’ll do a deep dive into Jackson Annotations. We’ll see how to use the ...
- 论文泛读:Click Fraud Detection: Adversarial Pattern Recognition over 5 Years at Microsoft
这篇论文非常适合工业界的人(比如我)去读,有很多的借鉴意义. 强烈建议自己去读. title:五年微软经验的点击欺诈检测 摘要:1.微软很厉害.2.本文描述了大规模数据挖掘所面临的独特挑战.解决这一问 ...
- Building a Non-blocking TCP server using OTP principles
转自:https://erlangcentral.org/wiki/index.php/Building_a_Non-blocking_TCP_server_using_OTP_principles ...
- springmvc 标签
https://www.baeldung.com/spring-mvc-form-tags 1. Overview In the first article of this series we ...
- 50 years of Computer Architecture: From the Mainframe CPU to the Domain-Specific TPU and the Open RISC-V Instruction Set
1.1960年代(大型机) IBM发明了具有二进制兼容性的ISA——System/360,可以兼容一系列的8到64位的硬件产品,而不必更换操作系统.这是通过微编程实现的,每个计算机模型都有各自的ISA ...
- 使用OTP原则构建一个非阻塞的TCP服务器
http://erlangcentral.org/wiki/index.php/Building_a_Non-blocking_TCP_server_using_OTP_principles CONT ...
- A Case for Lease-Based, Utilitarian Resource Management on Mobile Devices
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. Abstract 移动应用程序已经成为我们日常生活中不可或缺的一部分,但许多应用程序的设 ...
- 【转载】解决Windows 10 局域网内共享的问题
问题: 小米盒子,iPhone (OS 10.2) 无法访问 Win 1o共享 解决方案: 原文链接 http://www.dedoimedo.com/computers/windows-10-net ...
- Watch out for these 10 common pitfalls of experienced Java developers & architects--转
原文地址:http://zeroturnaround.com/rebellabs/watch-out-for-these-10-common-pitfalls-of-experienced-java- ...
随机推荐
- 【Azure 媒体服务】记录使用Java调用Media Service API时候遇见的一些问题
问题一:java.lang.IllegalArgumentException: Parameter this.client.subscriptionId() is required and canno ...
- 【Azure 应用服务】App Service 使用Tomcat运行Java应用,如何设置前端网页缓存的相应参数呢(-Xms512m -Xmx1204m)?
问题描述 App Service 使用Tomcat运行Java应用,如何设置前端网页缓存的相应参数呢(-Xms512m -Xmx1204m)? 问题回答 App Service在Windows的环境中 ...
- 一文详解云上自动化部署集群管理工具 Nebula Operator
本文首发于 Nebula Graph 公众号:Nebula Operator 开源啦!一文详解这个云上自动化部署集群管理工具 在介绍 Nebula Operator 之前,让我们先来了解下什么是 Op ...
- C++特殊类的设计与单例模式
#pragma once // 1. 设计一个不能被拷贝的类/* 解析:拷贝只会放生在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝, 只需让该类不能调用拷贝构造函数以及赋值运算 ...
- hadoop集群环境搭建--双NameNode
hadoop配置文件修改 个人配置文件压缩包地址: hadoop配置文件压缩包地址点此下载 tar -zxvf 你的压缩包路径/hadoop.tar.gz -C /usr/hadoop(你的hadoo ...
- CSS Navigation - vscode 插件 - vue css 跳转
CSS Navigation - vscode 插件 - vue css 跳转
- day02-SpringMVC映射请求数据
SpringMVC映射请求数据 1.获取参数值 在开发中,如何获取到 http://xxx/url?参数名1=参数值1&参数名2=参数值2 中的参数? 之前的案例中我们知道:提交的url的参数 ...
- 记一个很好用的轻量级翻译软件 copytranslator
软件下载主页: https://gitee.com/ylzheng/CopyTranslator/wikis/windows 可以设置始终置顶,监听剪切板,翻译起来非常方便
- 数据好合: Argilla 和 Hugging Face Spaces 携手赋能社区合力构建更好的数据集
最近,Argilla 和 Hugging Face 共同 推出 了 Data is Better Together 计划,旨在凝聚社区力量协力构建一个对提示进行排名的偏好数据集.仅用几天,我们就吸引了 ...
- 记录--uniapp登录流程详解uni.login
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 uni.login(OBJECT)登录 H5平台登陆注意事项: 微信内嵌浏览器运行H5版时,可通过js sdk实现微信登陆,需要引入一个单 ...