10.1 Matrix Factorizations

  1. A = LU = (Lower triangular L with 1's on the diagonal)(Upper triangular U with pivots on the diagonal)

    requirements : No row exchanges as Gaussian elimination reduces square A to U.

  2. A=LDU=(Lower triangular L with 1's on the diagonal)(pivot matrix D is diagonal)(Upper triangular U with 1's on the diagonal)

    requirements: No row exchanges.The pivots in D are divided out to leave 1's on the diagonal of U. If A is symmetric the U is \(L^T\) and \(A=LDL^T\).

  3. PA=LU

    requirements: permutation matrix P to avoid zeros in the pivot positions and to do all of the row exchanges on A in advances. A is invertible. Then P,L,U are invertible.

  4. EA=R (m by m invertible E)(any m by n matrix A) = rref(A)

    requirements : None! The reduced row echelon form R has r pivot rows and pivot columns, containing the identity matrix. The last m-r rows of E are a basis for the left nullspace of A; they multiply A to give m-r zero rows in R. The first r columns of \(E^{-1}\) are a basis for the column space of A.

  5. S=\(C^TC\)=(Lower triangular)(Upper triangular) with \(\sqrt{D}\) on both diagonals

    requirements: S is symmetric and positive definite (all n pivots in D are positive). This Cholesky factorization C=chol(S) has \(C^T=L\sqrt{D}\) , so \(S=C^TC=LDL^T\).

  6. \(A=QR\) = (orthonormal columns in Q) (upper triangular R)

    requirements: A has independent columns. Those are orthogonalized in Q by the Gram-Schmidt or Householder process.If A is square the \(Q^{-1}=Q^{T}\).

  7. \(A=X\Lambda X^{-1}\) = (eigenvectors in X) (eigenvalues in \(\Lambda\))(left eigenvectors in \(X^{-1}\))

    requirements: A must have n linearly independent eigenvectors.

  8. S = \(Q\Lambda Q^{-1}\)=\(Q\Lambda Q^T\) = (orthogonal matrix Q)(real eigenvalue matrix \(\Lambda\))(\(Q^T \ is \ Q^{-1}\))

    requirements: S is real and symmetric: \(S^T=S\). This is the Spectral Theorem.

  9. A = \(B J B^{-1}\) = (generalized eigenvectors in B)(Jordan blocks in J)(\(B^{-1}\))

    requirements: A is any square matrix. This Jordan form J has a block for each independent eigenvector of A . Every block has only one eigenvalue.

  10. A = \(U\Sigma V^T\) = (orthogonal U is \(m \times m\))(\(m \times n\) singular value matrix \(\sigma_1, \sigma_2, ..., \sigma_r\) on its diagonal)(orthogonal V is \(n \times n\))

    requirements: None. This Singular Value Decomposition(SVD) has the eigenvectors of \(AA^T\) in U and eigenvectors of \(A^TA\) in V; \(\sigma_i=\sqrt{\lambda_i(A^TA)}=\sqrt{\lambda_i(AA^T)}\); Those singular values are \(\sigma_1 \geq \sigma_2 \cdots \geq \sigma_r >0\). By column-row multiplication:

    \(A=U_{r}\Sigma V_{r}^T=\sigma_1 u_1 v_1^{T} + \cdots + \sigma_r u_r v_r^{T}\). If A is symmetric positive definite the \(U=V=Q\) and \(\Sigma = \Lambda\) and S=$Q\Lambda Q^T $

  11. \(A^{+}=V\Sigma^{+} U^T\) = (orthogonal V is \(n \times n\))(\(n \times m\) pseudoinverse of \(\Sigma\) with \(1/\sigma_1,\cdots,1/\sigma_r\) on diagonal)(orthogonal \(m \times m\))

    requirements: None. The pseudoinverse \(A^{+}\) has \(A^{+}A\)= projection onto row space of A and \(AA^{+}\)=projection onto column space. \(A^{+}=A^{-1}\) if A is invertible. The shortest least-squares solution to \(Ax=b\) is \(x^{+}=A^{+}b\). This solves \(A^{T}Ax^{+}=A^{T}b\).

  12. A = \(QS\) = (orthogonal matrix Q)(symmetric positive definite matrix S)

    requirements: A is invertible. This polar decomposition has \(S^2=A^TA\). The factor S is semidefinite if A is singular. The reverse polar decomposition A=KQ has \(K^2=AA^T\). Both have \(Q=UV^T\) from SVD.

  13. A = \(U\Lambda U^{-1}\) = (unitary U)(eigenvalue matrix \(\Lambda\))(\(U^{-1}\) which is \(U^{H}=\overline{U}^T\))

    requirements: A is normal. \(AA^H=A^HA\). Its orthonormal (and possibly complex) eigenvectors are the columns of U. Complex \(\lambda's\) unless \(S=S^H\): Hermitian case.

  14. A = \(QTQ^{-1}\) = (unitary Q)(triangular T with \(\lambda's\) on diagonal)(\(Q^{-1}=Q^H\))

    requirements: Schur trianularization of any square A.There is a matrix Q with orthonormal columns that makes \(Q^{-1}AQ\) triangular.

  15. \(F_n = \left [ \begin{matrix} I&D \\ I&-D \end{matrix}\right] \left [ \begin{matrix} F_{n/2}& \\ &F_{n/2} \end{matrix}\right] \left [ \begin{matrix} even-odd \\ permutation \end{matrix}\right]\)= one step of the recursive FFT.

    requirements: \(F_n\) = Fourier matrix with entries \(w^{jk}\) where \(w^n=1\) : \(F_n\overline{F_n}=nI\). D has \(1, w, ..., w^{n/2 - 1}\) on its diagonal. For \(n=2^l\) the Fast Fourier Transform will compute \(F_nx\) with only \(1/2 nl=1/2 nlog_2n\) multiplications form \(l\) stages of D's.

10.2 Six Great Theorems of Linear Algebra

Dimension Theorem : All bases for a vector space have the same number of vectors.

Counting Theorem: Dimension for column space + dimension of nullspace = number of columns.

Rank Theorem: Dimension of column space = dimension of row space = rank.

Fundamental Theorem:The row space and nullspace of A are orthogonal complements in \(R^n\); The column space and left nullspace of A are orthogonal complements in \(R^m\)

SVD: There are orthonormal bases (\(v's\) and \(u's\) for the row and column spaces) so that \(Av_i=\sigma_iu_i\).

Spectral Theorem:If \(A^T=A\) there are orthonormal \(q's\) so that \(Aq_i=\lambda_iq_i\) and \(A=Q\Lambda Q^T\).

10.3 Nonsingular VS Singular

Nonsingular --- Singular

A is invertible --- A is not invertible

The columns are independent --- The columns are dependent

The rows are independent --- The rows are dependent

The determinant is not zero --- The determinant is zero

Ax = 0 has one solution x=0 --- Ax=0 has infinitely many solutions

Ax=b has one solution \(x=A^{-1}b\) --- Ax=b has no solution or infinitely many

A has n pivots (nonzero) --- A has r< n pivots

A has full rank r=n --- A has rank r < n

The reduced row echelon form is R=I --- R has at least one zero row

The column space is all of \(R^m\) --- The column space has dimension r<m

The row space is all of \(R^n\) --- The row space has dimension r<n

All eigenvalues are nonzero --- Zero is an eigenvalues of A

\(A^TA\) is symmetric positive definite --- \(A^TA\) is only semidefinite

A has n (positive) singular values --- A has r < n singular values

10. Conclusion的更多相关文章

  1. 《In Search of an Understandable Consensus Algorithm》翻译

    Abstract Raft是一种用于管理replicated log的consensus algorithm.它能和Paxos产生同样的结果,有着和Paxos同样的性能,但是结构却不同于Paxos:它 ...

  2. Jackson Annotation Examples

    1. Overview In this article, we’ll do a deep dive into Jackson Annotations. We’ll see how to use the ...

  3. 论文泛读:Click Fraud Detection: Adversarial Pattern Recognition over 5 Years at Microsoft

    这篇论文非常适合工业界的人(比如我)去读,有很多的借鉴意义. 强烈建议自己去读. title:五年微软经验的点击欺诈检测 摘要:1.微软很厉害.2.本文描述了大规模数据挖掘所面临的独特挑战.解决这一问 ...

  4. Building a Non-blocking TCP server using OTP principles

    转自:https://erlangcentral.org/wiki/index.php/Building_a_Non-blocking_TCP_server_using_OTP_principles ...

  5. springmvc 标签

    https://www.baeldung.com/spring-mvc-form-tags     1. Overview In the first article of this series we ...

  6. 50 years of Computer Architecture: From the Mainframe CPU to the Domain-Specific TPU and the Open RISC-V Instruction Set

    1.1960年代(大型机) IBM发明了具有二进制兼容性的ISA——System/360,可以兼容一系列的8到64位的硬件产品,而不必更换操作系统.这是通过微编程实现的,每个计算机模型都有各自的ISA ...

  7. 使用OTP原则构建一个非阻塞的TCP服务器

    http://erlangcentral.org/wiki/index.php/Building_a_Non-blocking_TCP_server_using_OTP_principles CONT ...

  8. A Case for Lease-Based, Utilitarian Resource Management on Mobile Devices

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. Abstract 移动应用程序已经成为我们日常生活中不可或缺的一部分,但许多应用程序的设 ...

  9. 【转载】解决Windows 10 局域网内共享的问题

    问题: 小米盒子,iPhone (OS 10.2) 无法访问 Win 1o共享 解决方案: 原文链接 http://www.dedoimedo.com/computers/windows-10-net ...

  10. Watch out for these 10 common pitfalls of experienced Java developers & architects--转

    原文地址:http://zeroturnaround.com/rebellabs/watch-out-for-these-10-common-pitfalls-of-experienced-java- ...

随机推荐

  1. Java 通过属性名称读取或者设置实体的属性值

    原因 项目实战中有这个需求,数据库中配置对应的实体和属性名称,在代码中通过属性名称获取实体的对应的属性值. 解决方案 工具类,下面这个工具是辅助获取属性值 import com.alibaba.fas ...

  2. 【Azure 应用服务】本地Node.js部署上云(Azure App Service for Linux)遇到的三个问题解决之道

    问题描述 当本地Node.js(Linux + Node.js + npm + yarn)部署上云,选择 Azure App Service for Linux 环境.但是在部署时,遇见了以下三个问题 ...

  3. 【Azure Spring Cloud】Azure Spring Cloud connect to SQL using MSI

    问题描述 在Azure Spring Cloud中,通过ActiveDirectoryMSI方式来连接到SQL Service,需要如何配置呢? 问题分析 在SQL Service中启用Active ...

  4. 【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)

    问题描述 在Azure上创建的数据库,单独通过SQL的连接工具是可以访问,但在Web App却无法访问,错误信息为: { "timestamp": "2021-05-20 ...

  5. 【Azure 应用服务】Azure Function 中运行Powershell 脚本,定位 -DefaultProfile 引发的错误

    问题描述 突然之间,使用PowerShell脚本 Get-AzVirtualNetwork 获取虚拟网络信息时,如果带上  -DefaultProfile $sub 参数,就出现 Azure cred ...

  6. Kubernetes-一文详解ServiceAccount与RBAC权限控制

    一.ServiceAccount 1.ServiceAccount 介绍 首先Kubernetes中账户区分为:User Accounts(用户账户) 和 Service Accounts(服务账户) ...

  7. 5-事件组&任务通知

    获取某个事件 获取若干事件中的某个事件 获取若干事件中的全部事件 !!!!不可获得若干事件中的几个事件 创建事件组,设置事件,等待事件 static EventGroupHandle_t xEvent ...

  8. masscode.io snippets 和 vscode 联动 代码片段

    https://masscode.io/ 软件作用 代码片段 vscode 可以联动使用 下载不行 慢的话, 下载 fastgithub,打开后再下载

  9. 简单实用算法——二分查找法(BinarySearch)

    目录 算法概述 适用情况 算法原理 算法实现(C#) 实际应用:用二分查找法找寻边界值 参考文章 算法概述 二分查找(英语:binary search),也叫折半查找(英语:half-interval ...

  10. epoll和ractor的粗浅理解

    我们继续上篇的文章继续更新我们的代码. 首先就是介绍一下epoll的三个函数. epoll_create epoll_ctl epoll_wait 如何去理解这3个函数,我是这样去理解这个函数, 就像 ...