0x03~04 前缀和与差分、二分
A题:HNOI2003]激光炸弹
按照蓝书上的教程做即可,注意这道题卡空间用int 而不是 long long。
int g[5010][5010];
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
int N, R;
cin >> N >> R;
int xx = R, yy = R;
for (int i = 1; i <= N; ++i) {
int x, y, w;
cin >> x >> y >> w, ++x, ++y;
g[x][y] = w, xx = max(xx, x), yy = max(y, yy);
}
for (int i = 1; i <= xx; ++i)
for (int j = 1; j <= yy; ++j)
g[i][j] = g[i - 1][j] + g[i][j - 1] - g[i - 1][j - 1] +
g[i][j]; //求前缀和
int ans = 0;
for (int i = R; i <= xx; ++i)
for (int j = R; j <= yy; ++j)
//用提前算好的前缀和减去其他部分再补上多剪的那部分
ans =
max(ans, g[i][j] - g[i - R][j] - g[i][j - R] + g[i - R][j - R]);
cout << ans << "\n";
return 0;
}
B题:IncDec Sequence
设 a 的差分序列为 b.
则对区间 [l, r] 的数都加 1,就相当于 b[l]++, b[r + 1]--.
操作分为 4 种.
① 2 ≤ l ≤ r ≤ n (区间修改)
② 1 == l ≤ r ≤ n(修改前缀)
③ 2 ≤ l ≤ r == n + 1 (修改后缀)
④ 1 == l ≤ r == n + 1 (全修改)
其中操作 ④ 显然无用.
操作 ① 性价比最高.
于是可得出方案:先用操作 ① ,使得只剩下 正数 或 负数 ,剩下的用操作 ② 或 ③ 来凑.
using ll = long long;
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
int n;
cin >> n;
vector<ll> a(n + 1, 0), b(n + 2);
for (int i = 1; i <= n; ++i) cin >> a[i], b[i] = a[i] - a[i - 1];
ll p = 0, q = 0;
for (int i = 2; i <= n; ++i) { // 2~n的正负数和统计
if (b[i] > 0) p += b[i];
else if (b[i] < 0) q -= b[i];
}
cout << max(p, q) << "\n" << llabs(p - q) + 1 << "\n";
return 0;
}
C题:Tallest Cow
差分数组,对于给出第一个区间a,b,他们之间的人肯定比他们矮,最少矮1,那么就在a+1位置-1,b位置加1,计算前缀和,a+1以及之后的都被-1了,b及以后的不变。
重复的区间,不重复计算。
另一种思路:先将所有的牛的高度都设为最大值 然后在输入一组数A B时 将A B之间的牛的高度都减一。
map<pair<int, int>, bool> vis;
int c[10010], d[10010];
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
int n, p, h, m;
cin >> n >> p >> h >> m;
while (m--) {
int a, b;
cin >> a >> b;
if (a > b) swap(a, b);
if (vis[make_pair(a, b)]) continue; // 避免重复计算
vis[{a, b}] = true, d[a + 1]--, d[b]++;
}
for (int i = 1; i <= n; ++i) {
c[i] = c[i - 1] + d[i];
cout << h + c[i] << "\n";
}
return 0;
}
二分A题:Best Cow Fences
二分答案,判定是否存在一个长度不小于L的子段,平均数不小于二分的值。如果把数列中的每个数都减去二分的值,就转换为判定“是否存在一个长度不小于L的子段,子段和非负”。
先分别考虑两种情况的解法(1、子段和最大【无长度限制】,2、子段和最大,子段长度不小于L)
<==>求一个子段,使得它的和最大,且子段的长度不小于L。
子段和可以转换为前缀和相减的形式,即设\(sumj\)表示\(Ai 到 Aj\)的和,
则有:\(max{A[j+1]+A[j+2].......A[i] } ( i-j>=L ) \\ = max{ sum[i] - min{ sum[j] }(0<=j<=i-L) }(L<=i<=n)\)
仔细观察上面的式子可以发现,随着i的增长,j的取值范围 0~i-L 每次只会增大1。换言之,每次只会有一个新的取值进入 \(min\{sum_j\}\) 的候选集合,所以我们没必要每次循环枚举j,只需要用一个变量记录当前的最小值,每次与新的取值 sum[i-L] 取min 就可以了。
double a[100001], b[100001], sum[100001];
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
int n, L;
cin >> n >> L;
for (int i = 1; i <= n; ++i) cin >> a[i];
double eps = 1e-5;
double l = -1e6, r = 1e6;
while (r - l > eps) {
double mid = (l + r) / 2;
for (int i = 1; i <= n; ++i) b[i] = a[i] - mid;
for (int i = 1; i <= n; ++i) sum[i] = sum[i - 1] + b[i];
double ans = -1e10;
double min_val = 1e10;
for (int i = L; i <= n; ++i) {
min_val = min(min_val, sum[i - L]);
ans = max(ans, sum[i] - min_val);
}
if (ans >= 0)
l = mid;
else
r = mid;
}
cout << int(r * 1000) << "\n";
return 0;
}
0x03~04 前缀和与差分、二分的更多相关文章
- P1083 借教室(差分+二分)
P1083 借教室 第一眼:线段树. 然鹅懒得写. 正解:差分+二分. 显然订单合法的上线可以二分 然后差分数组维护一下.没了. #include<iostream> #include&l ...
- [NOIP2015]运输计划 线段树or差分二分
目录 [NOIP2015]运输计划 链接 思路1 暴力数据结构 思路2 二分树上差分 总的 代码1 代码2 [NOIP2015]运输计划 链接 luogu 好久没写博客了,水一篇波. 思路1 暴力数据 ...
- ZZNU-OJ-2098 : Drink coffee【线段树合并区间或者 差分 + 二分索引树】
: Drink coffee 时间限制: Sec 内存限制: MiB 提交: 答案正确: 提交 状态 讨论区 题目描述 为了在上课时保持清醒,凯伦需要一些咖啡.咖啡爱好者凯伦想知道最佳的温度来冲煮完美 ...
- P5057 [CQOI2006]简单题 前缀异或差分/树状数组
好思路,好思路... 思路:前缀异或差分 提交:1次 题解:区间修改,单点查询,树状数组,如思路$qwq$ #include<cstdio> #include<iostream> ...
- AcWing:139. 回文子串的最大长度(字符串Hash + 前缀和 + 后缀和 + 二分)
如果一个字符串正着读和倒着读是一样的,则称它是回文的. 给定一个长度为N的字符串S,求他的最长回文子串的长度是多少. 输入格式 输入将包含最多30个测试用例,每个测试用例占一行,以最多1000000个 ...
- Codeforces 1262E Arson In Berland Forest(二维前缀和+二维差分+二分)
题意是需要求最大的扩散时间,最后输出的是一开始的火源点,那么我们比较容易想到的是二分找最大值,但是我们在这满足这样的点的时候可以发现,在当前扩散时间k下,以这个点为中心的(2k+1)2的正方形块内必 ...
- 0x03 前缀和与差分
前缀和 [例题]BZOJ1218 激光炸弹 计算二位前缀和,再利用容斥原理计算出答案即可. #include <iostream> #include <cstdio> #inc ...
- NOIP2012借教室[线段树|离线 差分 二分答案]
题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要 向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自 ...
- 洛谷P2463 [SDOI2008]Sandy的卡片(后缀数组SA + 差分 + 二分答案)
题目链接:https://www.luogu.org/problem/P2463 [题意] 求出N个串中都出现的相同子串的最长长度,相同子串的定义如题:所有元素加上一个数变成另一个,则这两个串相同,可 ...
- 【BZOJ-4326】运输计划 树链剖分 + 树上差分 + 二分
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 703 Solved: 461[Submit][Status] ...
随机推荐
- Llinux登录后出现-bash-4.2#,解决办法以及造成这样的原因
版权声明:原创作品,谢绝转载!否则将追究法律责任. ----- 作者:kirin 1.原因是root在/root下面的几个配置文件丢失,丢失文件如下: 1..bash_profile 2..bashr ...
- 【Servlet】两种配置
web.xml中Servlet的注解 <servlet> <!-- servlet的内部名称,⾃定义 --> <servlet-name>类名</servle ...
- Mysql数据库插入数据时出现Unknown column ‘admin‘ in ‘field list‘错误
报错内容 报错原因 字段和插入的值所用的引号不对 解决方案 insert into t_user(`username`,`password`,`email`) VALUES(`admin`,`admi ...
- MCube动态化与原生工程结合最佳实践
跨端动态化开发方案重要性日益凸显,本文对我们团队MCube动态化实践做了总结,为大家提供经验和借鉴. 接入背景 随着我们工程的需求迭代,暴露出了业务需求量大,分端开发和发版更新成本高等痛点,使用H5页 ...
- 聊聊GLM基座模型的理论知识
概述 大模型有两个流程:预训练和推理. 预训练是在某种神经网络模型架构上,导入大规模语料数据,通过一系列的神经网络隐藏层的矩阵计算.微分计算等,输出权重,学习率,模型参数等超参数信息. 推理是在预训练 ...
- 基于LSTM的股票价格预测模型【附源码】
导语 本文介绍了LSTM的相关内容和在股票价格预测上的应用. LSTM的股票价格预测 LSTM(Long Short Term Memory)是一种 特殊的RNN类型,同其他的RNNs相比可以更加方便 ...
- vue3在父子组件使用v-model双向绑定
父组件: <script setup> import InputBox from "@/compon/InputBox.vue"; import {ref} from ...
- 数字孪生结合GIS能够在公共交通领域作出什么贡献?
数字孪生结合地理信息系统(GIS)在公共交通领域具有潜在的重大贡献,这种结合可以帮助城市更高效地规划.运营和改进公共交通系统.以下是一些关键方面的讨论,以说明数字孪生和GIS在这一领域的作用: 数字孪 ...
- Java多线程学习(Day01)
目录 线程简介 线程实现(重点) 线程状态 线程同步(重点) 线程通信问题 进程与线程概念 --来自百度百科的解释: 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资 ...
- Android本地备份功能禁用
最近部分设备激活客户端后发现本地备份的功能被禁用了,排查原因发现: /** * Allows the device owner to enable or disable the backup serv ...