一文带你了解两种Transformer文字识别方法
摘要:受Transformer模型的启发,目前一些学者将该结构应用到文本行识别中,以替代RNN,取得了良好的效果,如在HGA-STR和 SRN。
当前的文本行识别器为拥有更强的序列语义能力,模型多采用CNN + RNN的结构,如目前使用十分广泛的两个识别器CRNN和Aster,这些模型取得了非常好的效果。然而由于RNN只能采用串行计算,在目前大量采用并行计算设备的前提下,RNN面临着明显的速度瓶颈。若弃用RNN只使用CNN,性能往往不尽如人意。在NLP领域,Ashish Vaswan[1]等人提出的Transformer模型在语言理解相关任务上十分成功,并优于CNN和RNN效果,展现出Transformer强大的序列建模能力。Transformer模型基于Attention实现,该操作可并行实现,因此该模型具有良好的并行性。
受Transformer模型的启发,目前一些学者将该结构应用到文本行识别中,以替代RNN,取得了良好的效果,如在HGA-STR[2]和 SRN[3]。下面对两种方法进行介绍,总体上,HGA-STR更接近原有的Transformer的结构,使用了和Transformer类似的解码结构,而SRN则是使用了Transformer unit进行特征提取,并采用该文作者提出的并行解码器,整个模型拥有更好的可并行性。为较好理解下面两篇文章,请参阅相关资料以了解Transformer的原理。
HGA-STR 简介
对于不规则文本,文本分布在二维空间上,将其转换成一维有一定难度,同时基于RNN的编码解码器无法做到并行,本文直接将2D的特征输入到attention-based 1D序列解码器,解码器采用Transformer中的解码器同样的结构。同时,在编码器部分,提取一个全局语义向量,与解码器的输入embedding向量合并,为解码器提供全局语义信息。该模型结构如图1所示。
图 1. 模型的基本结构
编码器介绍:该模型使用CNN进行特征提取,并保持输出的特征为二维。并使用池化操作得到一维向量,作为全局信息表示。
解码器介绍:编码器主要组件有:masked self-attention用来建模预测结果的依赖性;2D-attention用来连接编码器和解码器;以及一个前馈层。具体实现和Transformer文中的结构相同。同时为了更好的性能作者使用两个方向进行解码,结构如图2所示。
图 2.该方法使用双向解码器
该方法在多个英文基准数据集取得了较好的结果,具体结果可参见论文。在速度上作者和两种基于attention的方法进行对比有一定的优势,如表1所示。
表 1. 速度对比
在作者进行的对比试验中,一个比较有意思的现象是,在编码器里面添加Self-attention模块并不能提升模型性能,在解码器中添加才会对结果有提升,如表2所示。这表明原本的Transformer结构直接应用到文字识别任务上是不可行的,需要做相应的调整。
表 2. Self-attention性能对比
SRN简介
与上一方法不同的是,SRN采用完全不同的解码方式,并引入全局语义推理模块。就获取语义信息的方式而言,主流的Attention-based方法基于RNN来实现,是一种采用单向串行方式进行建模的方法,如图 3.(a)所示。这种方式有明显的不足:
1)仅仅感知了历史时刻的语义信息,而无法获取未来时刻的语义信息;
2)如果较早时刻解码出的错误字符,会为余下时刻的解码传递错误的语义信息,导致误差积累效应;
3)串行的解码模式是相对低效的,特别是在模型预测的环节。
图 3. 两种不同的传递语义信息的方法
如图4所示,SRN由四部分组成:基础网络Backbone、并行的视觉特诊提取模块(PVAM)、全局语义推理模块(GSRM) 和视觉语义融合的解码器(VSFD)。给定一张输入的文本图像,基于ResNet50 + Transformer unit的Backbone从中提取出视觉2D feature map V;之后PVAM会针对每个目标字符获取其相应的视觉特征G;GSRM会基于视觉特征G获取全局语义信息,并转化为每个目标字符的语义特征S;最后VSFD融合对齐的视觉特征和语义特征,预测出相应字符。在训练阶段和推断阶段,每个序列中各个字符之间是并行。
图 4. 方法的总体结构图
PVAM模块介绍:在Backbone输出了2D的视觉特征图之后,PVAM会针对文本行中的每个字符,计算出相应attention map, 通过将其与feature map 按像素加权求和,可得到每个目标字符对应的的视觉特征。另外,PVAM也用字符的阅读顺序取代上一时刻隐变量来引导计算当前时刻的attention map,实现了并行提取视觉特征的目的。
GSRM模块介绍:GSRM会基于全局语义信息进行推理。具体过程为,首先将视觉过程转换成语义特征,使用交叉熵损失进行监督,并对其概率分布取argmax得到初始的分类结果,同时通过分类结果获取每个字符的embedding向量,通过多层Transformer unit后,得到经语义推理模块修正的预测结果,同样使用交叉熵损失进行监督。
VSFD 模块介绍:对PVAM输出的对齐的视觉特征和GSRM输出的全局语义特征进行融合,最后基于融合后的特征进行预测输出。
该方法在多个英文基准数据集上取得了SOTA的结果。对于中文长文本的识别,SRN相对于其他识别方法也有明显优势,如表3所示。
表 3.中文数据集结果(TRW-L为长文本)
速度上,得益于整个模型的并行设计,SRN拥有较小的推理时延,如表4所示。
表 4.推理速度介绍
Reference
[1] https://arxiv.org/pdf/1706.03762.pdf
[2] https://arxiv.org/abs/1904.01375
[3] https://arxiv.org/pdf/2003.12294.pdf
本文分享自华为云社区《技术综述六:文字识别中基于Transformer识别方法汇总简介》,原文作者:谷雨润一麦 。
一文带你了解两种Transformer文字识别方法的更多相关文章
- Tomcat下载安装并部署到IDEA(附带idea两种热部署设置方法)
目录 Tomcat下载教程 Tomcat安装教程 Tomcat热部署到IDEA idea两种热部署设置方法 使用Idea的时候,修改了代码,需要反复的重启Tomcat,查看效果,是不是贼烦?还记得刚上 ...
- 接口测试中GET和POST两种基本HTTP请求方法的区别
面试时,可以回答(一般答前4条就行): GET参数通过url传递,POST放在request body中 GET请求在url中传递的参数是有长度限制的,而POST没有 GET比POST更不安全,因为参 ...
- C#两种创建快捷方式的方法
C#两种创建快捷方式的方法http://www.cnblogs.com/linmilove/archive/2009/06/10/1500989.html
- HTTP/HTTPS GET&POST两种方式的实现方法
关于GET及POST方式的区别请参照前面文章:http://www.cnblogs.com/hunterCecil/p/5698604.html http://www.cnblogs.com/hunt ...
- iOS - UITableView中有两种重用Cell的方法
UITableView中有两种重用Cell的方法: - (id)dequeueReusableCellWithIdentifier:(NSString *)identifier; - (id)dequ ...
- 两种ps切图方法(图层/切片)
两种Ps切图方法 一. 基础操作: a) Ctrl++ 放大图片,ctrl - -缩小图片 b) 按住空格键space+,点击鼠标左键,拖动图片. c) 修改单位,点击编辑 ...
- Eclipse中SVN的安装步骤(两种)和使用方法
Eclipse中SVN的安装步骤(两种)和使用方法 一.给Eclipse安装SVN,最常见的有两种方式:手动方式和使用安装向导方式.具体步骤如下: 方式一:手动安装 1.下载最新的Eclipse,我的 ...
- TextView两种显示link的方法
TextView两种显示link的方法 一.简介 也是TextView显示文本控件两种方法 也是显示丰富的文本 二.方法 TextView两种显示link的方法 1)通过TextView里面的类ht ...
- Python_两种导入模块的方法异同
Python中有两种导入模块的方法 1:import module 2:from module import * 使用from module import *方法可以导入独立的项,也可以用from m ...
- SSH简介及两种远程登录的方法
出处 https://blog.csdn.net/li528405176/article/details/82810342 目录 SSH的安全机制 SSH的安装 启动服务器的SSH服务 SSH两种级别 ...
随机推荐
- SpringBoot + 自定义注解 + AOP 高级玩法打造通用开关
前言 最近在工作中迁移代码的时候发现了以前自己写的一个通用开关实现,发现挺不错,特地拿出来分享给大家. 为了有良好的演示效果,我特地重新建了一个项目,把核心代码提炼出来加上了更多注释说明,希望xdm喜 ...
- Python操作Word水印:添加文字或图片水印
在Word文档中,可以添加半透明的图形或文字作为水印,以保护文档的原创性,防止未经授权的复制或使用.除了提供安全功能外,水印还可以展示文档创作者的信息.附加的文档信息,或者仅用于文档的装饰.本文将介绍 ...
- Fiddler安装,使用及汉化教程
Fiddler安装及汉化教程 一.下载安装 1.下载 官网链接:https://www.telerik.com/download/fiddler 左侧填写用途,邮箱及城市,然后下载就可以 左侧下载即D ...
- Docker磁盘&内存&CPU资源实战
Docker 资源实战:cpu/内存配置: #查看帮助 docker run --help docker update --help #配置容器使用cpu /内存大小--privileged 给与容器 ...
- ResNet详解:网络结构解读与PyTorch实现教程
本文深入探讨了深度残差网络(ResNet)的核心概念和架构组成.我们从深度学习和梯度消失问题入手,逐一解析了残差块.初始卷积层.残差块组.全局平均池化和全连接层的作用和优点.文章还包含使用PyTorc ...
- 03Java学习_注释和代码规范
注释和代码规范 目录 注释和代码规范 注释 注释介绍 单行注释 多行注释 文档注释 代码规范 注释 注释介绍 用于注解说明解释程序的文字就是注释,注释提高了代码的阅读性(可读性):注释 是一个程序员必 ...
- 双指针:盛最多水的容器(4.18leetcode每日一题)
给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中的两条线, ...
- 链表K个节点的组内逆序调整问题
链表K个节点的组内逆序调整问题 作者:Grey 原文地址: 博客园:链表K个节点的组内逆序调整问题 CSDN:链表K个节点的组内逆序调整问题 题目描述 LeetCode 25. Reverse Nod ...
- 关于Anolis8/Centos8系统重启后ip地址丢失的原因
关于Anolis8/Centos8系统重启后ip地址丢失的原因 #.今天把之前在VMware安装的Anolis8系统重启了,启动之后发现Xshell连接不上.在VMware上登录后执行ip a命令发现 ...
- 老是听到做PPT要会“内容可视化”,到底啥是内容可视化?
在PPT中,内容可视化是指将文字.数据和概念等抽象信息转化为图像.图表.图表及其他可视化元素来呈现.通过合适的颜色.形状.大小和布局等视觉设计元素来强调信息的关键点和关系, 从而提高观众对信息的理解和 ...