1 前言

​ 本文主要介绍使用 OpenGL ES 绘制立方体,读者如果对 OpenGL ES 不太熟悉,请回顾以下内容:

​ 在绘制立方体的过程中,主要用到了 MVP (Model View Projection)矩阵变换。

  • Model:模型变换,施加在模型上的空间变换,包含平移变换(translateM)、旋转变换(rotateM)、对称变换(transposeM)、缩放变换(scaleM);
  • View:观测变换,施加在观测点上的变换,用于调整观测点位置、观测朝向、观测正方向;
  • Projection:透视变换,施加在视觉上的变换,用于调整模型的透视效果(如:矩形的透视效果是梯形)。

​ 上述变换依次叠加,得到一个总的变换矩阵,即 MVP 变换矩阵,mvpMatrix = projectionMatrix * viewMatrix * modelMatrix,MVP 变换作用到模型的原始坐标矩阵上,得到的最终坐标矩阵即为用户观测到的模型状态。MVP 矩阵变换原理见→MVP矩阵变换

​ 本文完整代码资源见→【OpenGL ES】绘制立方体

​ 项目目录如下:

2 案例

​ MainActivity.java

package com.zhyan8.cube;

import android.opengl.GLSurfaceView;
import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity; public class MainActivity extends AppCompatActivity {
private GLSurfaceView mGlSurfaceView; @Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
mGlSurfaceView = new MyGLSurfaceView(this);
setContentView(mGlSurfaceView);
mGlSurfaceView.setRenderer(new MyRender(this));
} @Override
protected void onResume() {
super.onResume();
mGlSurfaceView.onResume();
} @Override
protected void onPause() {
super.onPause();
mGlSurfaceView.onPause();
}
}

​ MyGLSurfaceView.java

package com.zhyan8.cube;

import android.content.Context;
import android.opengl.GLSurfaceView;
import android.util.AttributeSet; public class MyGLSurfaceView extends GLSurfaceView {
public MyGLSurfaceView(Context context) {
super(context);
setEGLContextClientVersion(3);
} public MyGLSurfaceView(Context context, AttributeSet attrs) {
super(context, attrs);
setEGLContextClientVersion(3);
}
}

​ MyRender.java

package com.zhyan8.cube;

import android.content.Context;
import android.opengl.GLES30;
import android.opengl.GLSurfaceView;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10; public class MyRender implements GLSurfaceView.Renderer {
private FloatBuffer vertexBuffer;
private FloatBuffer colorBuffer;
private ByteBuffer indexBuffer;
private GLUtils mGLUtils;
private int mProgramId;
private float mRatio; public MyRender(Context context) {
mGLUtils = new GLUtils(context);
} @Override
public void onSurfaceCreated(GL10 gl, EGLConfig eglConfig) {
//设置背景颜色
GLES30.glClearColor(0.1f, 0.2f, 0.3f, 0.4f);
//启动深度测试
gl.glEnable(GLES30.GL_DEPTH_TEST);
//编译着色器
final int vertexShaderId = mGLUtils.compileShader(GLES30.GL_VERTEX_SHADER, R.raw.vertex_shader);
final int fragmentShaderId = mGLUtils.compileShader(GLES30.GL_FRAGMENT_SHADER, R.raw.fragment_shader);
//链接程序片段
mProgramId = mGLUtils.linkProgram(vertexShaderId, fragmentShaderId);
GLES30.glUseProgram(mProgramId);
} @Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
//设置视图窗口
GLES30.glViewport(0, 0, width, height);
getFloatBuffer();
mRatio = 1.0f * width / height;
} @Override
public void onDrawFrame(GL10 gl) {
//将颜色缓冲区设置为预设的颜色
GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT | GLES30.GL_DEPTH_BUFFER_BIT);
mGLUtils.transform(mProgramId, mRatio); //计算MVP变换矩阵
//启用顶点的数组句柄
GLES30.glEnableVertexAttribArray(0);
GLES30.glEnableVertexAttribArray(1);
//准备顶点坐标和颜色数据
GLES30.glVertexAttribPointer(0, 3, GLES30.GL_FLOAT, false, 0, vertexBuffer);
GLES30.glVertexAttribPointer(1, 4, GLES30.GL_FLOAT, false, 0, colorBuffer);
//绘制正方体的表面(6个面,每面2个三角形,每个三角形3个顶点)
gl.glDrawElements(GLES30.GL_TRIANGLES, 6 * 2 * 3, GLES30.GL_UNSIGNED_BYTE, indexBuffer);
//禁止顶点数组句柄
GLES30.glDisableVertexAttribArray(0);
GLES30.glDisableVertexAttribArray(1);
} private void getFloatBuffer() {
float r = 1.0f;
float[] vertex = new float[] {
r, r, r, //0
-r, r, r, //1
-r, -r, r, //2
r, -r, r, //3
r, r, -r, //4
-r, r, -r, //5
-r, -r, -r, //6
r, -r, -r //7
};
byte[] index = new byte[] {
0, 2, 1, 0, 2, 3, //前面
0, 5, 1, 0, 5, 4, //上面
0, 7, 3, 0, 7, 4, //右面
6, 4, 5, 6, 4, 7, //后面
6, 3, 2, 6, 3, 7, //下面
6, 1, 2, 6, 1, 5 //左面
};
float c = 1.0f;
float[] color = new float[] {
c, c, c, 1,
0, c, c, 1,
0, 0, c, 1,
c, 0, c, 1,
c, c, 0, 1,
0, c, 0, 1,
0, 0, 0, 1,
c, 0, 0, 1
};
vertexBuffer = mGLUtils.getFloatBuffer(vertex);
indexBuffer = mGLUtils.getByteBuffer(index);
colorBuffer = mGLUtils.getFloatBuffer(color);
}
}

​ GLUtils.java

package com.zhyan8.cube;

import android.content.Context;
import android.opengl.GLES30;
import android.opengl.Matrix;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer; public class GLUtils {
private Context mContext;
private int mRotateAgree = 0; public GLUtils(Context context) {
mContext = context;
} public FloatBuffer getFloatBuffer(float[] floatArr) {
FloatBuffer fb = ByteBuffer.allocateDirect(floatArr.length * Float.BYTES)
.order(ByteOrder.nativeOrder())
.asFloatBuffer();
fb.put(floatArr);
fb.position(0);
return fb;
} public ByteBuffer getByteBuffer(byte[] byteArr) {
ByteBuffer bb = ByteBuffer.allocateDirect(byteArr.length * Byte.BYTES)
.order(ByteOrder.nativeOrder());
bb.put(byteArr);
bb.position(0);
return bb;
} //通过代码片段编译着色器
public int compileShader(int type, String shaderCode){
int shader = GLES30.glCreateShader(type);
GLES30.glShaderSource(shader, shaderCode);
GLES30.glCompileShader(shader);
return shader;
} //通过外部资源编译着色器
public int compileShader(int type, int shaderId){
String shaderCode = readShaderFromResource(shaderId);
return compileShader(type, shaderCode);
} //链接到着色器
public int linkProgram(int vertexShaderId, int fragmentShaderId) {
final int programId = GLES30.glCreateProgram();
//将顶点着色器加入到程序
GLES30.glAttachShader(programId, vertexShaderId);
//将片元着色器加入到程序
GLES30.glAttachShader(programId, fragmentShaderId);
//链接着色器程序
GLES30.glLinkProgram(programId);
return programId;
} //从shader文件读出字符串
private String readShaderFromResource(int shaderId) {
InputStream is = mContext.getResources().openRawResource(shaderId);
BufferedReader br = new BufferedReader(new InputStreamReader(is));
String line;
StringBuilder sb = new StringBuilder();
try {
while ((line = br.readLine()) != null) {
sb.append(line);
sb.append("\n");
}
br.close();
} catch (Exception e) {
e.printStackTrace();
}
return sb.toString();
} //计算MVP变换矩阵
public void transform(int programId, float ratio) {
//初始化modelMatrix, viewMatrix, projectionMatrix
float[] modelMatrix = getIdentityMatrix(16, 0); //模型变换矩阵
float[] viewMatrix = getIdentityMatrix(16, 0); //观测变换矩阵
float[] projectionMatrix = getIdentityMatrix(16, 0); //投影变换矩阵
//获取modelMatrix, viewMatrix, projectionMatrix
mRotateAgree = (mRotateAgree + 2) % 360;
Matrix.rotateM(modelMatrix, 0, mRotateAgree, 1, 1, 1); //获取模型旋转变换矩阵
Matrix.setLookAtM(viewMatrix, 0, 0, 5, 10, 0, 0, 0, 0, 1, 0); //获取观测变换矩阵
Matrix.frustumM(projectionMatrix, 0, -ratio, ratio, -1, 1, 3, 20); //获取投影变换矩阵
//计算MVP变换矩阵: mvpMatrix = projectionMatrix * viewMatrix * modelMatrix
float[] mvpMatrix = new float[16];
Matrix.multiplyMM(mvpMatrix, 0, viewMatrix, 0, modelMatrix, 0);
Matrix.multiplyMM(mvpMatrix, 0, projectionMatrix, 0, mvpMatrix, 0);
//设置MVP变换矩阵
int mvpMatrixHandle = GLES30.glGetUniformLocation(programId, "mvpMatrix");
GLES30.glUniformMatrix4fv(mvpMatrixHandle, 1, false, mvpMatrix, 0);
} private float[] getIdentityMatrix(int size, int offset) {
float[] matrix = new float[size];
Matrix.setIdentityM(matrix, offset);
return matrix;
}
}

​ vertex_shader.glsl

#version 300 es
layout (location = 0) in vec4 vPosition;
layout (location = 1) in vec4 aColor;
uniform mat4 mvpMatrix;
out vec4 vColor;
void main() {
gl_Position = mvpMatrix * vPosition;
vColor = aColor;
}

​ 顶点着色器的作用:进行矩阵变换位置、根据光照公式计算顶点颜⾊⽣成 / 变换纹理坐标,并且把位置和纹理坐标发送到片元着色器。

​ 顶点着色器中,如果没有指定默认精度,则 int 和 float 的默认精度都为 highp。

​ fragment_shader.glsl

#version 300 es
precision mediump float; //声明float型变量的精度为mediump
in vec4 vColor;
out vec4 fragColor;
void main() {
fragColor = vColor;
}

​ 片元着色器的作用:处理经光栅化阶段生成的每个片元,计算每个像素的颜色和透明度。

​ 在片元着色器中,浮点值没有默认的精度值,每个着色器必须声明一个默认的 float 精度。

运行结果:

​ 声明:本文转自【OpenGL ES】绘制正方形

【OpenGL ES】绘制立方体的更多相关文章

  1. 【Qt for Android】OpenGL ES 绘制彩色立方体

    Qt 内置对OpenGL ES的支持.选用Qt进行OpenGL ES的开发是很方便的,很多辅助类都已经具备.从Qt 5.0開始添加了一个QWindow类,该类既能够使用OpenGL绘制3D图形,也能够 ...

  2. 使用OpenGL ES绘制3D图形

    如果应用定义的顶点不在同一个平面上,并且使用三角形把合适的顶点连接起来,就可以绘制出3D图形了. 使用OpenGL  ES绘制3D图形的方法与绘制2D图形的步骤大致相同,只是绘制3D图形需要定义更多的 ...

  3. 【AR实验室】OpenGL ES绘制相机(OpenGL ES 1.0版本)

    0x00 - 前言 之前做一些移动端的AR应用以及目前看到的一些AR应用,基本上都是这样一个套路:手机背景显示现实场景,然后在该背景上进行图形学绘制.至于图形学绘制时,相机外参的解算使用的是V-SLA ...

  4. 2.x最终照着教程,成功使用OpenGL ES 绘制纹理贴图,添加了灰度图

    在之前成功绘制变色的几何图形之后,今天利用Openg ES的可编程管线绘制出第一张纹理. 学校时候不知道OpenGL的重要性,怕晦涩的语法.没有跟老师学习OpenGL的环境配置,现在仅仅能利用coco ...

  5. Android OpenGL ES 开发(四): OpenGL ES 绘制形状

    在上文中,我们使用OpenGL定义了能够被绘制出来的形状了,现在我们想绘制出来它们.使用OpenGLES 2.0来绘制形状会比你想象的需要更多的代码.因为OpenGL的API提供了大量的对渲染管线的控 ...

  6. Opengl ES之四边形绘制

    四边形的绘制在Opengl ES是很重要的一项技巧,比如做视频播放器时视频的渲染就需要使用到Opengl ES绘制四边形的相关知识.然而在Opengl ES却没有直接提供 绘制四边形的相关函数,那么如 ...

  7. Android面试收集录 OpenGL ES

    1.如何用OpenGL ES绘制一个三角形? 编写一个类实现Renderer接口,实现onDrawFrame方法,onSurfaceChanged方法,onSurfaceCreated方法 编写一个类 ...

  8. OpenGL ES应用开发实践指南:iOS卷

    <OpenGL ES应用开发实践指南:iOS卷> 基本信息 原书名:Learning OpenGL ES for iOS:A Hands-On Guide to Modern 3D Gra ...

  9. Android OpenGL ES(四)关于EGL .

    OpenGL ES的javax.microedition.khronos.opengles 包定义了平台无关的GL绘图指令,EGL(javax.microedition.khronos.egl ) 则 ...

  10. 【Android Developers Training】 62. 搭建一个OpenGL ES环境

    注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...

随机推荐

  1. 【TouchGFX】visua studio 自定义路径宏

    很好奇 touchgfx 的 visual studio 工程文件中路径符号 $(TouchGFXReleasePath)是哪里定义的,经查这就是一个宏替换 自定义宏方式  

  2. Go-连接redis

  3. 【特别的骚气】asp.net core运行时注入服务,实现类库热插拔

    引言 很久之前在群里有看到说asp.net core能不能在运行时注入程序,当时并没有太在意,刚才在某个群里又看到有人再问,core能不能在运行时注入服务,闲来无事,我就研究了一下,其实也比较简单,在 ...

  4. [转帖]Linux命令(51)——ipcs命令

    https://cloud.tencent.com/developer/article/1380589 1.命令简介 ipcs命令用于报告Linux中进程间通信设施的状态,显示的信息包括消息列表.共享 ...

  5. [转帖]Elasticsearch-索引性能调优

    1:设置合理的索引分片数和副本数 索引分片数建议设置为集群节点的整数倍,初始数据导入时副本数设置为 0,生产环境副本数建议设置为 1(设置 1 个副本,集群任意 1 个节点宕机数据不会丢失:设置更多副 ...

  6. 银河麒麟系统信息获取V1.0版本

    银河麒麟系统信息获取 摘要 最近项目有一些兼容性测试需求. 可能需要获取一些系统配置信息便于相关的工作. 想着自己总结一下. 便于后续的不太熟悉的同事进行简要处理 银河麒麟获取版本 nkvers # ...

  7. 关于SSL证书的学习与总结

    关于证书 证书是用来实现https通信加密的基础, 有证书才能够进行相关的TLS层的加密处理. 本文简要讲解一下证书的申请,创建以及使用等. 第一部分: PKI 公共密钥基础 其实有很多家企业在做PK ...

  8. 使用systemd管理多nginx服务以及单nginx服务实现多vhost访问的操作步骤

    背景 nginx是开源的web服务器, 性能与可配置性和插件做的非常完善. 可以使用简单的命令拉起来nginx进行服务提供,但是有时候需要使用keepalive等软件实现保活,以及实现开启启动等,比较 ...

  9. 从好玩到好用:程序员用AI提效的那些事儿

    本片内容是[AI思维空间]ChatGPT纵横编程世界,点亮智慧火花的续作,主要记录组内开发小伙伴儿们在开发过程中的实际应用案例,记录典型案例,尽量不要和其他人重复,以解决开发过程中的实际问题为主,设计 ...

  10. FM的一种简易解调方式

    理论来源 <高低频电路设计与制作> 铃木雅臣 著.这位作者的书写的都不错 电路图 模拟思路 设输入信号为 \[s(t) = \sin(w_0 t + \Delta w\int_{- \in ...