题目:

某个国家有V(V≤1000)个城市,每两个城市之间都有一条双向道路直接相连,长度为T(每条边的长度都是T)。你的任务是找一条最短的道路(起点和终点任意),

使得该道路经过E条指定的边。输出这条道路的长度。

思路:

看完题目给出的两组数据,知道是一个欧拉路径的题目,然后考虑用并查集来统计连通分量的个数,然后答案就是这个个数减一+给出的边数E……

这题细思极恐,如果一个连通分量里边有多个奇点,那么这样只统计连通分量个数的做法就不对了。

这是一个无向连通图,那么对于每一个连通分量我们可以把它变成一个欧拉路径。再把所有的欧拉路径合成一个。

在合并的时候,每两个奇点可以用一条边来连接,除去最终留下的两个奇点,这样(奇点总数-2)/2-1+给出的边数就是答案。

对于是环的连通分量,可以默认他的奇点的个数是2.

如果给出的图只有一个点,那么答案一定是0.

代码:

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define MAX 1000000009
#define FRE() freopen("in.txt","r",stdin)
#define FRO() freopen("out.txt","w",stdout)
using namespace std;
typedef long long ll;
const int maxn = ;
vector<int> mp[maxn];
int V,T,E;
int vis[maxn]; int DFS(int u){ if(vis[u])
return ;
//cout<<"GG: "<<u<<endl;
vis[u] = ;
int cnt=;//奇点的个数
if(mp[u].size()%)
cnt++;
for(int i=; i<mp[u].size(); i++){
cnt += DFS(mp[u][i]);
}
return cnt;
} int main(){
//FRE();
int cs = ;
ios::sync_with_stdio(false);
while(cin>>V>>E>>T && V){
for(int i=; i<*V; i++){
mp[i].clear();
}
for(int i=; i<E; i++){
int st,en;
cin>>st>>en;
mp[st].push_back(en);
mp[en].push_back(st);
}
memset(vis,,sizeof(vis));
int ans=;
for(int i=; i<=V; i++){//统计图中一共有多少个奇点
if(!vis[i] && mp[i].size()){
ans += max(DFS(i),);
//cout<<ans<<endl;
}
}
ans = max(,(ans-)/)+E;//处理图中只有一个点的情况
cout<<"Case "<<++cs<<": "<<ans*T<<endl;
}
return ;
}

UVA12118 Inspector's Dilemma(欧拉路径)的更多相关文章

  1. UVA-12118 Inspector's Dilemma (欧拉回路)

    题目大意:一个有v个顶点的完全图,找一条经过m条指定边的最短路径. 题目分析:当每条边仅经过一次时,路径最短.给出的边可能构成若干棵树.在一棵树中,奇点个数总为偶数,若一棵树的奇点个数为0,则这棵树可 ...

  2. UVA 12118 Inspector's Dilemma(连通性,欧拉路径,构造)

    只和连通分量以及度数有关.不同连通分量只要连一条边就够了,连通分量为0的时候要特判.一个连通分量只需看度数为奇的点的数量,两个端点(度数为奇)是必要的. 如果多了,奇点数也一定是2的倍数(一条边增加两 ...

  3. 6-14 Inspector s Dilemma uva12118(欧拉道路)

    题意:给出一个国家城市个数n   所需走过道路个数e   每条道路长t   该国家任意两个城市之间都存在唯一道路长t     要求 :找一条最短的路遍历所有所需走过的路 一开始以为是图的匹配  但是好 ...

  4. Inspector's Dilemma(欧拉通路)

    In a country, there are a number of cities. Each pair of city is connected by a highway, bi-directio ...

  5. 【UVa】12118 Inspector's Dilemma(欧拉道路)

    题目 题目     分析 很巧秒的一道题目,对着绿书瞎yy一会. 联一下必须要走的几条边,然后会形成几个联通分量,统计里面度数为奇数的点,最后再减去2再除以2.这样不断相加的和加上e再乘以t就是答案, ...

  6. UVA - 12118 Inspector's Dilemma(检查员的难题)(欧拉回路)

    题意:有一个n个点的无向完全图,找一条最短路(起点终点任意),使得该道路经过E条指定的边. 分析: 1.因为要使走过的路最短,所以每个指定的边最好只走一遍,所以是欧拉道路. 2.若当前连通的道路不是欧 ...

  7. UVA12188-Inspector's Dilemma(欧拉回路+连通性判断)

    Problem UVA12188-Inspector's Dilemma Time Limit: 3000 mSec Problem Description In a country, there a ...

  8. 自定义Inspector检视面板

    Unity中的Inspector面板可以显示的属性包括以下两类:(1)C#以及Unity提供的基础类型:(2)自定义类型,并使用[System.Serializable]关键字序列化,比如: [Sys ...

  9. 企业IT管理员IE11升级指南【16】—— 使用Compat Inspector快速定位IE兼容性问题

    企业IT管理员IE11升级指南 系列: [1]—— Internet Explorer 11增强保护模式 (EPM) 介绍 [2]—— Internet Explorer 11 对Adobe Flas ...

随机推荐

  1. oracle 存储过程调用 执行

    oracle 存储过程调用 博客分类: 数据库相关   oracle存储过程 2011年02月11日 星期五 14:47 SQL中调用存储过程语句: call procedure_name(); 调用 ...

  2. Lexer and parser generators (ocamllex, ocamlyacc)

    Chapter 12 Lexer and parser generators (ocamllex, ocamlyacc) This chapter describes two program gene ...

  3. 第十五周 Leetcode 517. Super Washing Machines(HARD) 贪心

    Leetcode517 很有趣的一道题 由于每一步可以任选某些数字对它们进行转移,所以实际上是在求最优解中的最复杂转移数. 那么我们考虑,到底哪一个位置要经过的流量最大呢? 枚举每个位置,考虑它左边的 ...

  4. mysql 依赖包问题

  5. Spark 二项逻辑回归__二分类

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{B ...

  6. 17.EXTJs 中icon 与iconCls的区别及用法!

    转自:https://blog.csdn.net/u013890437/article/details/38315717?utm_source=blogxgwz7

  7. IE6的3像素BUG产生条件及解决方法

    1.IE6中第一个元素浮动第二个元素不浮动,这两个元素之间就会产生3像素BUG 2.解决方案: 2.1若若宽度一定则给第二个元素添加 float 样式即可: 2.2若宽度自适应: 2.2.1  _ma ...

  8. E20180127-hm

    retain  vt. 保持; 留在心中,记住; 雇用; 付定金保留;

  9. moiezen

    这题是个随机化+二分裸题--------考场上居然没有想出来--想的出来就怪了吧 我们随机一下增加x的顺序,然后进行二分之前,看看这个x加完之后能不能更新答案,不能就不二分了.具题解所说,这个复杂度是 ...

  10. 【BZOJ4009_洛谷3242】[HNOI2015] 接水果(整体二分)

    题目: 洛谷 3242 分析: 明确题意:在一棵树上给定若干权值为 \(w\) 的路径 \((u,v)\) (盘子),每次给定 \((a,b)\) (水果),询问所有满足 \((u,v)\) 被 \( ...