- > 动规讲解基础讲解三——混合背包(背包模板)
将01背包,完全背包,和多重完全背包问题结合起来,那么就是混合三种背的问题
根据三种背包的思想,那么可以得到
混合三种背包的问题可以这样子求解
for(int i=1; i<=N; ++i)
if(第i件物品是01背包)
zeroOnePack(c[i],w[i]);
else if(第i件物品是完全背包)
completePack(c[i],w[i]);
else if(第i件物品是多重完全背包)
multiplePack(c[i],w[i],n[i]);
这样能得到最优解的原因是,因为前一层已经是得到最优解了,
当前层求解最优解的时候,我们考虑要使用三种背包中的哪一种方法
而不用考虑前一层是怎么得到最优解的
#include <stdio.h>
#include <string.h>
int cash;
int n[],dk[];
int dp[];
inline int max(const int &a, const int &b)
{
return a < b ? b : a;
}
void CompletePack(int cost)
{
for(int i=cost; i<=cash; ++i)
dp[i] = max(dp[i],dp[i-cost]+cost);
}
void ZeroOnePack(int cost)
{
for(int i=cash; i>=cost; --i)
dp[i] = max(dp[i],dp[i-cost]+cost);
}
void MultiplePack(int cnt, int cost)
{
if(cnt*cost >=cash)//如果第i种物品的费用总和超过背包容量,那么就是完全背包问题
CompletePack(cost);
else
{
int k = ;//二进制拆分
while(k<cnt)//判断剩下的数字能不能够拆分为k
{
ZeroOnePack(cost*k);
cnt -=k;
k<<=;
}
ZeroOnePack(cnt*cost);
}
}
int main()
{
//输入的处理以及函数的调用
return ;
}
如果对你有所帮助,别忘了加好评哦;么么哒!!下次见!88
- > 动规讲解基础讲解三——混合背包(背包模板)的更多相关文章
- - > 动规讲解基础讲解一——01背包(模板)
作为动态规划的基础,01背包的思想在许多动规问题中会经常出现,so,熟练的掌握01背包的思路是极其重要的: 有n件物品,第i件物品(I = 1,2,3…n)的价值是vi, 重量是wi,我们有一个能承重 ...
- - > 动规讲解基础讲解五——最长公共子序列问题
一些概念: (1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列. 例如: 对序列 1,3,5 ...
- - > 动规讲解基础讲解六——编辑距离问题
给定两个字符串S和T,对于T我们允许三种操作: (1) 在任意位置添加任意字符(2) 删除存在的任意字符(3) 修改任意字符 问最少操作多少次可以把字符串T变成S? 例如: S= “ABCF” ...
- - > 动规讲解基础讲解八——正整数分组
将一堆正整数分为2组,要求2组的和相差最小.例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. 整数个数n<=100,所有整数的和<=1 ...
- - > 动规讲解基础讲解七——最长单增子序列
(LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的. 例如给定序列 ...
- - > 动规讲解基础讲解四——最大子段和问题
给出一个整数数组a(正负数都有),如何找出一个连续子数组(可以一个都不取,那么结果为0),使得其中的和最大? 例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13.和为20. ...
- - > 动规讲解基础讲解四——矩阵取数
给定一个m行n列的矩阵,矩阵每个元素是一个正整数,你现在在左上角(第一行第一列),你需要走到右下角(第m行,第n列),每次只能朝右或者下走到相邻的位置,不能走出矩阵.走过的数的总和作为你的得分,求最大 ...
- vijos1431[noip2007]守望者的逃离(背包动规)
描述 恶魔猎手尤迪安野心勃勃,他背叛了暗夜精灵,率领深藏在海底的娜迦族企图叛变.守望者 在与尤迪安的交锋中遭遇了围杀,被困在一个荒芜的大岛上.为了杀死守望者,尤迪安开始对这 个荒岛施咒,这座岛很快就会 ...
- Verilog语法基础讲解之参数化设计
Verilog语法基础讲解之参数化设计 在Verilog语法中,可以实现参数化设计.所谓参数化设计,就是在一个功能模块中,对于一个常量,其值在不同的应用场合需要设置为不同的置,则将此值在设计时使用 ...
随机推荐
- 260 Single Number III 数组中除了两个数外,其他的数都出现了两次,找出这两个只出现一次的数
给定一个整数数组 nums,其中恰好有两个元素只出现一次,其他所有元素均出现两次. 找出只出现一次的那两个元素.示例:给定 nums = [1, 2, 1, 3, 2, 5], 返回 [3, 5].注 ...
- Storm概念学习系列之storm流程图
把stream当做一列火车, tuple当做车厢,spout当做始发站,bolt当做是中间站点!!! 见 Storm概念学习系列之Spout数据源 Storm概念学习系列之Topology拓扑 Sto ...
- Roslyn导致发布网站时报错:编译失败
最近新升级了Visual Studio 2017,创建的Web项目Bin目录中多了一个叫roslyn的文件夹,该文件夹导致网站在某些服务器上发布出错 从网上搜索了一下,Roslyn是新出的动态编译工具 ...
- Spring Boot (27) actuator服务监控与管理
actuaotr是spring boot项目中非常强大的一个功能,有助于对应用程序进行监控和管理,通过restful api请求来监管.审计.收集应用的运行情况,针对微服务而言它是必不可少的一个环节. ...
- Python的变量类型
一.概要 二.数字类型(Numbers) 1.Python支持的数字类型 int(有符号整型) long(长整型) float(浮点型) complex(复数) 2.类型转换 int(x ) #将 ...
- iOS基础笔试题 - 集锦一
前言 下文转载自https://mp.weixin.qq.com/s?__biz=MzA4ODk0NjY4NA==&mid=454115946&idx=1&sn=c7f1b50 ...
- BZOJ1499: [NOI2005]瑰丽华尔兹(dp)
Description 你跳过华尔兹吗?当音乐响起,当你随着旋律滑动舞步,是不是有一种漫步仙境的惬意?众所周知,跳华尔兹时,最重要的是有好的音乐.但是很少有几个人知道,世界上最伟大的钢琴家一生都漂泊在 ...
- org.apache.jasper.JasperException: javax.el.PropertyNotFoundException: Property [xxx] not readable on type [xxx]
由于javaBean中的属性是custFullName,所以在使用jsp的时候,通过el表达式获取属性的值<td>${m.CustFullName}</td>.但是加载页面的时 ...
- Flask框架 之abort、自定义错误、视图函数返回值与jsonify
一.abort函数 使用abort函数可以立即终止视图函数的执行,并可以返回给前端特定的值. abort函数的作用: 1.传递状态码,必须是标准的http状态码 2.传递响应体信息 @app.rout ...
- 如何在网页中浏览和编辑DWG文件 梦想CAD控件
如何在网页中浏览和编辑DWG文件 梦想CAD控件 www.mxdraw.com 梦想绘图控件5.2 是国内最强,最专业的CAD开发组件(控件),不需要AutoCAD就能独立运行.控件使用VC 201 ...