裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。

所以最后能得到的最小燃料书就是gcd,所以直接对因数计数然后找最小的个数大于k的因数就是答案

#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=1005;
int n,k,a[N],mx;
map<int,int>s;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
mx=max(mx,a[i]);
int j;
for(j=1;j*j<a[i];j++)
if(a[i]%j==0)
{
s[j]++;
s[a[i]/j]++;
}
if(j*j==a[i])
s[j]++;
}
map<int,int>::iterator it=s.end(),jt=s.begin();
for(it--,jt--;it!=jt;it--)
if(it->second>=k)
{
printf("%d\n",it->first);
break;
}
return 0;
}

bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】的更多相关文章

  1. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  2. luoguP4571 [JSOI2009]瓶子和燃料 裴蜀定理

    裴蜀定理的扩展 最后返回的一定是\(k\)个数的\(gcd\) 因此对于每个数暴力分解因子统计即可 #include <map> #include <cstdio> #incl ...

  3. [BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)

    [BZOJ 2257][JSOI2009]瓶子和燃料 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子 ...

  4. 洛谷 P4571 BZOJ 2257 [JSOI2009]瓶子和燃料

    bzoj题目链接 上面hint那里是选择第2个瓶子和第3个瓶子 Time limit 10000 ms Memory limit 131072 kB OS Linux Source Jsoi2009 ...

  5. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

  6. bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理

    题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...

  7. bzoj 2257: [Jsoi2009]瓶子和燃料

    #include<cstdio> #include<iostream> #include<algorithm> #include<cmath> usin ...

  8. 2257: [Jsoi2009]瓶子和燃料

    题意:给你n个数字,然后让你选出k个,这k个数字进行任意组合,问得到的最小结果是多少? 数学知识: 分析:根据题意得出数学公式: 那么,如何在n个之中选出k个呢?其实不用选,因为直接计算各个因子,然后 ...

  9. [P4549] 【模板】裴蜀定理 - GCD

    __gcd真好用 #include <bits/stdc++.h> using namespace std; int main() { int n,x,a=0; cin>>n; ...

随机推荐

  1. 学习日常笔记<day14>自定义标签

    1自定义标签 1.1第一个自定义标签开发步骤 1)编写一个普通的java类,继承SimpleTagSupport类,叫标签处理器类 /** * 标签处理器类 * @author APPle * 1)继 ...

  2. SVN 学习笔记-高级操作

    所谓高级操作,只是曲高和寡,其实都不怎么用的.但是关键时候,可能会很有用. 这个高级只是针对基本操作而言.有些操作可能也是比较基本的. 清除锁 有时候我们在操作的时候,可能系统崩溃了,或者SVN非正常 ...

  3. 109.Convert sorted list to BST

    /* * 109.Convert sorted list to BST * 2016.12.24 by Mingyang * 这里的问题是对于一个链表我们是不能常量时间访问它的中间元素的. * 这时候 ...

  4. 系统安全攻防战:DLL注入技术详解

    DLL注入是一种允许攻击者在另一个进程的地址空间的上下文中运行任意代码的技术.攻击者使用DLL注入的过程中如果被赋予过多的运行特权,那么攻击者就很有可能会在DLL文件中嵌入自己的恶意攻击代码以获取更高 ...

  5. 全文搜索引擎 Elasticsearch 安装

    全文搜索引擎 Elasticsearch 安装 学习了:http://www.ruanyifeng.com/blog/2017/08/elasticsearch.html 拼音:https://www ...

  6. vue 手风琴组件

    1.创建组件 SqueezeBox.vue <!-- 手风琴(三级折叠列表) 组件 --> <template> <div class="header" ...

  7. IIS 配置 FTP 网站 H5 音频标签自定义样式修改以及添加播放控制事件

    IIS 配置 FTP 网站   在 服务器管理器 的 Web服务器IIS 上安装 FTP 服务 在 IIS管理器 添加FTP网站 配置防火墙规则 说明:服务器环境是Windows Server 200 ...

  8. eclipse maven 插件的安装和配置

    maven3 安装: 安装 Maven 之前要求先确定你的 JDK 已经安装配置完毕.Maven是 Apache 下的一个项目.眼下最新版本号是 3.0.4.我用的也是这个. 首先去官网下载 Mave ...

  9. linear map (also called a linear mapping, linear transformation or, in some contexts, linear function

    Linear map - Wikipedia https://en.wikipedia.org/wiki/Linear_map

  10. 相关性系数缺点与证明 k阶矩

    相关性系数 https://baike.baidu.com/item/相关系数/3109424?fr=aladdin 缺点 需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关, ...