HDU1452:Happy 2004(积性函数)(因子和)
题意
给出\(x\),求\(2004^x\)的所有因子和
分析
\(2004=2*2*3*167\)
则\(2004^x\)=\(2^{2x}*3^x*167^x\)
s[\(2004^x\)]=s[\(2^{2x}\)]s[\(3^x\)]s[\(167^x\)]
s[i]为积性函数
如果\(p\)为素数,则$s(p^x) = (1 + p^1 + p^2 + ... p^x) = (p^{x+1} - 1) / (p-1) $
然后求出2,3,167的逆元即可
注意开long long
代码
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <bitset>
using namespace std;
#define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
#define cpy(a,b) memcpy(a,b,sizeof(b))
#pragma comment(linker, "/STACK:102400000,102400000")
inline void read(int &x){x=0; char ch=getchar();while(ch<'0') ch=getchar();while(ch>='0'){x=x*10+ch-48; ch=getchar();}}
int a[4]={0,2,3,22},x;
const int mod=29;
ll work(int p,int x)
{
ll ret=1;
for(;x;x>>=1,(p*=p)%=mod) if(x&1) (ret*=p)%=mod;
return ret;
}
int main()
{
while(scanf("%d",&x),x)
{
ll ans=1;ans=ans*(work(a[1],2*x+1)-1)%mod;
F(i,2,3)
ans=ans*((work(a[i]%mod,x+1)-1)*work((a[i]-1)%mod,mod-2))%mod;
printf("%lld\n",ans);
}
return 0;
}
HDU1452:Happy 2004(积性函数)(因子和)的更多相关文章
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- HDU1452Happy 2004(高次幂取模+积性函数+逆元)
题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- HDU 1452 Happy 2004(因数和+费马小定理+积性函数)
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- POJ 2480 Longge's problem (积性函数,欧拉函数)
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...
- Divisor counting [线性筛积性函数]
Divisor counting 题目大意:定义f(n)表示整数n的约数个数.给出正整数n,求f(1)+f(2)+...+f(n)的值. 注释:1<=n<=1000,000 想法:我们再次 ...
- [模板] 积性函数 && 线性筛
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...
随机推荐
- msp430项目编程11
msp430中项目---步进电机控制系统 1.步进电机工作原理 2.电路原理说明 3.代码(显示部分) 4.代码(功能实现) 5.项目总结 msp430项目编程 msp430入门学习
- Match the string--hdu1797(模拟)
http://acm.hdu.edu.cn/showproblem.php?pid=1797 就是模拟 我的思路是标记aba 和h的位置 然后就判断是否正确 就行了 还有就是 最后 fkfkfkf ...
- 1370 - Bi-shoe and Phi-shoe(LightOJ1370)(数论基础,欧拉函数)
http://lightoj.com/volume_showproblem.php?problem=1370 欧拉函数: 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. φ(n) ...
- Atom编辑Markdown文件保存后行尾的空格自动消失的问题解决
Markdown文件的行尾增加两个空格表示一行结束需要换行. 但保存文件后,行尾的空格自动消失,导致不换行. 解决方法: 1.[Edit]->[Preferences]->[Package ...
- 检查nginx配置,重载配置以及重启的方法
原文 http://blogread.cn/it/article/4549?f=hot1 几个常用的nginx命令 Nginx 安装后只有一个程序文件,本身并不提供各种管理程序,它是使用参数和系统信 ...
- tomcat配置访问项目时不需要加项目名称
原文:http://blog.csdn.net/coolcoffee168/article/details/52582770 java web部署后,访问项目的时候,需要在地址中添加项目名称,那么如何 ...
- SQL 连接(JOIN)
SQL 连接(JOIN) SQL join 用于把来自两个或多个表的行结合起来. SQL JOIN SQL JOIN 子句用于把来自两个或多个表的行结合起来,基于这些表之间的共同字段. 最常见的 JO ...
- Find Minimum in Rotated Sorted Array 旋转数组中找最小值 @LeetCode
O(n)的算法就不说了,这题主要考查的是 O(logn)的算法. 有序数组easy想到使用二分查找解决.这题就是在二分基础上做一些调整.数组仅仅有一次翻转,能够知道原有序递增数组被分成两部分,这俩部分 ...
- 如何在Visual Studio 2017中使用C# 7+语法 构建NetCore应用框架之实战篇(二):BitAdminCore框架定位及架构 构建NetCore应用框架之实战篇系列 构建NetCore应用框架之实战篇(一):什么是框架,如何设计一个框架 NetCore入门篇:(十二)在IIS中部署Net Core程序
如何在Visual Studio 2017中使用C# 7+语法 前言 之前不知看过哪位前辈的博文有点印象C# 7控制台开始支持执行异步方法,然后闲来无事,搞着,搞着没搞出来,然后就写了这篇博文,不 ...
- 各种“GND”
资料来自网上,把个人觉得靠谱的摘取下来 1.地分类: a)直流地:直流电路“地”,零电位参考点: b)交流地:交流电的零线.要与地线区别开,不过,有时候拉电入户之前会把地线和零线接在一起: c)功率地 ...