题解报告:hdu 1575 Tr A
Problem Description
Input
Output
Sample Input
Sample Output
#include<bits/stdc++.h>
using namespace std;
const int mod=;
const int maxn=;
struct Matrix{int m[maxn][maxn];}init;
int t,n,k;
Matrix mul(Matrix a,Matrix b){
Matrix c;
for(int i=;i<n;i++){//枚举第一个矩阵的行。
for(int j=;j<n;j++){//枚举第二个矩阵的列。
c.m[i][j]=;
for(int k=;k<n;k++)//枚举第一个矩阵的列数
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
}
}
return c;
}
Matrix POW(Matrix a,int x){//矩阵快速幂模仿一般快速幂,x为幂指数
Matrix b;memset(b.m,,sizeof(b.m));//先初始化为0,再构造单位矩阵
for(int i=;i<n;++i)b.m[i][i]=;
while(x){
if(x&)b=mul(b,a);//如果x的二进制最低位为1,则乘上A^(2^i)
a=mul(a,a);//将矩阵a平方
x>>=;
}
return b;
}
int main(){
while(cin>>t){
while(t--){
cin>>n>>k;
for(int i=;i<n;++i)
for(int j=;j<n;++j)
cin>>init.m[i][j];
Matrix res=POW(init,k);//矩阵快速幂取模运算
int ans=;
for(int i=;i<n;++i)//主对角线上各项的和
ans=(ans+res.m[i][i])%mod;
cout<<ans<<endl;
}
}
return ;
}
题解报告:hdu 1575 Tr A的更多相关文章
- HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...
- hdu 1575 Tr A
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和), ...
- HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others) Me ...
- HDU 1575 Tr A(矩阵高速幂)
题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...
- hdu 1575 Tr A(矩阵快速幂乘法优化算法)
Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n ...
- HDU 1575 Tr A----矩阵相乘题。
Tr A Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- hdu 1575 Tr A (二分矩阵)
Tr A Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu 1575 Tr A(矩阵高速电源输入)
Tr A Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- hdu 1575 Tr A(矩阵快速幂)
今天做的第二道矩阵快速幂题,因为是初次接触,各种奇葩错误整整调试了一下午.废话不说,入正题.该题应该属于矩阵快速幂的裸题了吧,知道快速幂原理(二进制迭代法,非递归版)后,剩下的只是处理矩阵乘法的功夫了 ...
随机推荐
- Python基础—面向对象(进阶篇)
通过上一篇博客我们已经对面向对象有所了解,下面我们先回顾一下上篇文章介绍的内容: 上篇博客地址:http://www.cnblogs.com/phennry/p/5606718.html 面向对象是一 ...
- Spring核心技术(一)——IoC容器和Bean简介
IoC容器和Bean简介 这章包括了Spring框架对于IoC规则的实现.Ioc也同DI(依赖注入).而对象是通过构造函数,工厂方法,或者一些Set方法来定义对象之间的依赖的.容器在创建这些Bean对 ...
- 《阿里巴巴Java开发手册》更新为《Java开发手册》
新版一览:华山版<Java开发手册> <阿里巴巴Java开发手册>始于阿里内部规约,在全球Java开发者共同努力下,已成为业界普遍遵循的开发规范,涵盖编程规约.异常日志.单元测 ...
- getContextPath和getRealPath的区别-----其实主要区别就是相对路径和绝对路径
getContextPath和getRealPath的区别 其实主要区别就是相对路径和绝对路径 https://blog.csdn.net/zsmj_2011/article/details/4121 ...
- ansible playbooks loop循环
在一个task中循环某个操作 1.标准循环 - name: add several users user: name: "{{ item }}" state: present gr ...
- mongo实践-透过js shell操作mongo
mongo实践-通过js shell操作mongo 保存命令: j={name:"wangjingjing",age:15} db.user.save(j); 查询命令: var ...
- 小L 的二叉树(洛谷 U4727)
题目背景 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣. 所以,小L当时卡在了二叉树. 题目描述 在计算机科学中,二叉树是每个结点最多有两个子结点的 ...
- 生成随机数验证码的工具类(from韩顺平)
生成随机数验证码的工具类 package com.cx; //生成随机数的图片 import java.awt.Color; import java.awt.Font; import java.awt ...
- CODEVS1222 信与信封问题 (匈牙利算法)
先做一遍匈牙利算法.对于已经匹配的边,如果删去之后还能最大匹配数增加,则不符合要求. 一遍匈牙利算法是O(n^3)的,对于每一条边做n次,每次O(n^2),总的复杂度是O(n^3). 注意:不要忘记输 ...
- [bzoj1293][SCOI2009]生日礼物(单调队列)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1293 分析: 问题的关键就是选择每种颜色的哪一个好.可以先把每种颜色的第一个一起,更新 ...