【bzoj2120】数颜色

Description

墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问。墨墨会像你发布如下指令: 1、 Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔。 2、 R P Col 把第P支画笔替换为颜色Col。为了满足墨墨的要求,你知道你需要干什么了吗?

Input

第1行两个整数N,M,分别代表初始画笔的数量以及墨墨会做的事情的个数。第2行N个整数,分别代表初始画笔排中第i支画笔的颜色。第3行到第2+M行,每行分别代表墨墨会做的一件事情,格式见题干部分。

Output

对于每一个Query的询问,你需要在对应的行中给出一个数字,代表第L支画笔到第R支画笔中共有几种不同颜色的画笔。

Sample Input

6 5
1 2 3 4 5 5
Q 1 4
Q 2 6
R 1 2
Q 1 4
Q 2 6

Sample Output

4
4
3
4

HINT

对于100%的数据,N≤10000,M≤10000,修改操作不多于1000次,所有的输入数据中出现的所有整数均大于等于1且不超过10^6。

其实还是可以用莫队的。只要记录下每组询问是多少次修改之后得到的,在每次做询问前,把现在少改的修改改上,多改的改回来。具体实现呢——暴力for循环。其他都一样。

由于每次都要暴力修改,要保证复杂度,排序方式应不一样。

这样排序,修改的的复杂度可能还是很高。所以还要调整块的大小。

设块大小为S,那么就会有个块。且假设n,m同阶。

当这次询问与上次询问的l在同一块内,l移动次数为,在不同块内,次数也为。l移动次数为

当l在同一块中,r的移动和l同理,移动次数为
当l跨过了一块,r的移动次数为,由于l最多跨过块,移动次数为
所以r的移动次数为

再考虑修改的总复杂度。由于l,r在同一块中时,按修改次数单调递增排序,所以这是修改次数是O(n)的。
又因为l,r的不同的块共有种,所以总复杂度是

整个算法复杂度
时,复杂度变成了

 #include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstdio> #define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch>''||ch<''){if (ch=='-') f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} char st[];
int c[],a[],cnt[],pos[],Ans[];
int L,R,ans,Now;
struct query{
int l,r,pre,id;
}Q[];
struct modify{
int x,pre,now;
}M[];
bool cmp(query x,query y)
{
if (pos[x.l]!=pos[y.l]) return pos[x.l]<pos[y.l];
if (pos[x.r]!=pos[y.r]) return pos[x.r]<pos[y.r];
else return x.pre<y.pre;
}
void modify(int pos,int key)
{
if (L<=pos&&R>=pos)
{
cnt[a[pos]]--;
if (!cnt[a[pos]]) ans--;
cnt[key]++;
if (cnt[key]==) ans++;
}
a[pos]=key;
}
inline void add(int x)
{
cnt[a[x]]++;
if (cnt[a[x]]==) ans++;
}
inline void del(int x)
{
cnt[a[x]]--;
if (cnt[a[x]]==) ans--;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
scanf("%d",&a[i]),c[i]=a[i];
int x,key,l,r,cq=,cm=;
for (int i=;i<=m;i++)
{
scanf("%s",st);
if (st[]=='Q')
{
scanf("%d%d",&l,&r);
Q[++cq].l=l,Q[cq].r=r,Q[cq].pre=cm,Q[cq].id=cq;
}
else
{
scanf("%d%d",&x,&key);
M[++cm].x=x,M[cm].pre=c[x],M[cm].now=key,c[x]=key;
}
}
int X=pow(n,0.67);
for (int i=;i<=n;i++)
pos[i]=(i-)/X+;
sort(Q+,Q++cq,cmp);
L=,R=;
Now=ans=;
for (int i=;i<=cq;i++)
{
for (int j=Now+;j<=Q[i].pre;j++)
modify(M[j].x,M[j].now);
for (int j=Now;j>Q[i].pre;j--)
modify(M[j].x,M[j].pre);
while (L>Q[i].l) add(--L);
while (R<Q[i].r) add(++R);
while (L<Q[i].l) del(L++);
while (R>Q[i].r) del(R--);
Now=Q[i].pre;
Ans[Q[i].id]=ans;
}
for (int i=;i<=cq;i++)
printf("%d\n",Ans[i]);
return ;
}

bzoj2120 数颜色 莫队 带修改的更多相关文章

  1. BZOJ2120 数颜色 莫队 带修莫队

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2120.html 题目传送门 - BZOJ2120 题意 给定一个长度为 $n$ 的序列 $a$ ,有 ...

  2. bzoj2120: 数颜色 [莫队][分块]

    Description 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜 ...

  3. [BZOJ2120]数颜色(莫队算法)

    Description 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜 ...

  4. P4074 [WC2013]糖果公园 树上莫队带修改

    题目链接 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 nn 个游览点构 ...

  5. BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)

    题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...

  6. P1903 [国家集训队]数颜色 / 维护队列 带修改的莫队

    \(\color{#0066ff}{ 题目描述 }\) 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支 ...

  7. P1903 [国家集训队]数颜色 / 维护队列 带修改莫队

    题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...

  8. luogu 1903 [国家集训队]数颜色 / 维护队列 带修改莫队

    十分玄学的数据结构~ code: #include <bits/stdc++.h> #define N 1000006 #define setIO(s) freopen(s".i ...

  9. BZOJ2120 数颜色 【带修莫队】

    BZOJ2120 数颜色 Description 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到 ...

随机推荐

  1. 洛谷 P1340 兽径管理

    题目描述 约翰农场的牛群希望能够在 N 个(1<=N<=200) 草地之间任意移动.草地的编号由 1到 N.草地之间有树林隔开.牛群希望能够选择草地间的路径,使牛群能够从任一 片草地移动到 ...

  2. Window10 开启传统启动界面

    Windows 10沿袭了Windows 8的快速启动,导致在启动过程中无法通过按F8进入启动选项,这样当系统遇到问题无法进入时根本无法通过进入安全模式等方式进行处理(当然通过其他一些工具还是能够引导 ...

  3. 状态压缩---区间dp第一题

    标签: ACM 题目 Gappu has a very busy weekend ahead of him. Because, next weekend is Halloween, and he is ...

  4. SAP成都研究院郑晓霞:Shift Left Testing和软件质量保证的一些思考

    今天的文章来自Jerry的同事,曾经的搭档郑晓霞(Zheng Kate).郑晓霞是在Jerry心中是一位很有实力的程序媛,2011年从西安某软件公司跳槽到SAP成都研究院.当时,成都研究院的CRM团队 ...

  5. 微信程序开发系列教程(四)使用微信API创建公众号自定义菜单

    大家可能经常看到一些微信公众号具有功能强大的自定义菜单,点击之后可以访问很多有用的功能. 这篇教程就教大家如何动手做一做. 这个教程最后实现的效果是:创建一个一级菜单"UI5", ...

  6. Asp.Net Core 入门(九)—— 环境变量 TagHelper

    我们在之前讲Program.cs文件做了什么的时候,提到启动CreaeDefaultBuilder会获取环境变量来做一些判断之类的操作.那么我们的Taghelper也可以使用“ASPNETCORE_E ...

  7. webpack打包性能分析

    1. 如何定位webpack打包速度慢的原因 首先需要定位webpack打包速度慢的原因,才能因地制宜采取合适的方案,我们可以在终端输入: webpack --profile --json > ...

  8. EMVS: Event-based Multi-View Stereo 阅读笔记

    0. 摘要 EMVS目的:从已知轨迹的event相机,估计半稠密的3D结构 传统的MVS算法目的:从已知视点的图片集,去估计场景的稠密3D结构. EMVS2个固有属性: (1)   当传感器发生相对运 ...

  9. tomcat假死现象(转)

    1.1 编写目的 为了方便大家以后发现进程假死的时候能够正常的分析并且第一时间保留现场快照. 1.2编写背景 最近服务器发现tomcat的应用会偶尔出现无法访问的情况.经过一段时间的观察最近又发现有台 ...

  10. Java中的线程--多线程面试题

    到这里,基本上线程的并发中的知识点都是学到了,到了最后,还有三道面试题,从面试题中学习更加的加深一下,多线程中的知识点,如何在实际的问题中来解决多线程的问题,可以更好的从实际出发 一.面试题1 面试题 ...