链接

之前队内赛中的一道题目 当时怎么想也没想到,就一直放到了今天,刚才看另一题的讲解突然看到时拿这个题作为引子来讲的,就仔细看了下。

参考《《具体数学》》 p7。 Josephus问题

开始是讲了一个古老的故事,说J和同伴陷入险境,大家不愿做俘虏,就想了个游戏来进行自杀,每第二个人就要去死。。J觉得这样很傻,并很快的算出了自己该在的位置,逃脱了这无聊的自杀。由此引出了这个有趣的算法。

这本书上讲的很清楚, 我就大体概括一下。

可以先从10个人来看 很明显第一次死掉的是全部的偶数, 然后是 是3 7 1 9.那么J(10) = 5;

可以猜测所有的J(n)都为奇数,因为第一轮就杀掉了全部的偶数,很明显。。

然后再猜J(n) = n/2? 很明显 不是。不过假如有2N个人 第一次还是杀掉所有的偶数 那么剩下了n个数,那么这n个数不就是跟之前的n同样来处理。。,

只不过编号变成了原来的2*i -1. 所以J(20) = 2*j(10)-1 = 9; 类推 J(40) = 17 所以得出j(5*2^m) = 2^(m+1)+1;

那么奇数呢,类似可知 J(2n+1) = 2*J(n)+1;

所以归纳可得

j(1) = 1;

j(2n) = 2j(n)-1;

j(2n+1) = 2j(n)+1;

这样是很快的,每次以减少2倍或多的速度来算,不过这可关乎J的性命,所以J还得想更快的方法才能确保他逃得过此劫。

那么继续看 1  2 3  4 5 6 7  8 9 10 11 12 13 14 15  16

     1   1 3  1 3 5 7  1 3 5 7 9 11  13 15 17   1

下面对的是J(n)的值 ,结论应该可以猜出来了,与2的幂有关。

结论:对于每一个n可以写成n=2^m+k的形式 。那么J(2^m+k) = 2k+1;

上式是由 上上的递归式推出来的,书上用的归纳法,数学不好就不再证了。

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100000
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
int main()
{
int n,m;
char c;
while(cin>>n>>c>>m)
{
if(!n&&!m) break;
n = n*pow(10.0,m);
int k = log(n*1.0)/log(2.0);
int s = pow(2.0,k);
cout<<(n-s)*+<<endl;
}
return ;
}

poj1781In Danger(约瑟夫) 问题的更多相关文章

  1. ACM数学

     1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...

  2. 约瑟夫问题(java实现)

    方法一.自定义的链表实现 package com.code.yuesefu; public class YueSeFuList { public static void main(String[] a ...

  3. R自动数据收集第一章概述——《List of World Heritage in Danger》

      导包     library(stringr) library(XML) library(maps) heritage_parsed <- htmlParse("http://en ...

  4. Java 解决约瑟夫问题

    约瑟夫问题(有时也称为约瑟夫斯置换,是一个出现在计算机科学和数学中的问题.在计算机编程的算法中,类似问题又称为约瑟夫环.又称“丢手绢问题”.) 有这样一个故事,15个教徒和15个非教徒在深海遇险必须讲 ...

  5. C#实现约瑟夫环问题

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace orde ...

  6. C语言数组实现约瑟夫环问题,以及对其进行时间复杂度分析

    尝试表达 本人试着去表达约瑟夫环问题:一群人围成一个圈,作这样的一个游戏,选定一个人作起点以及数数的方向,这个人先数1,到下一个人数2,直到数到游戏规则约定那个数的人,比如是3,数到3的那个人就离开这 ...

  7. C语言链表实现约瑟夫环问题

    需求表达:略 分析: 实现: #include<stdio.h> #include<stdlib.h> typedef struct node { int payload ; ...

  8. AC日记——约瑟夫问题 codevs 1282

    1282 约瑟夫问题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master 题解  查看运行结果     题目描述 Description 有编号从1到N的N个小 ...

  9. Have Fun with Numbers及循环链表(约瑟夫问题)

    1. 循环链表(约瑟夫问题) https://github.com/BodhiXing/Data_Structure 2. Have Fun with Numbers https://pta.pate ...

随机推荐

  1. Storm专题二:Storm Trident API 使用具体解释

    一.概述      Storm Trident中的核心数据模型就是"Stream",也就是说,Storm Trident处理的是Stream.可是实际上Stream是被成批处理的. ...

  2. angular react vue 浏览器兼容情况汇总

    一.逻辑层 框架 (1)angular Angular早在1.3版本就抛弃了对ie8的支持. (2)react React 早在0.14.x 版本就抛弃了对ie8的支持. (3)vue Vue就没打算 ...

  3. hadoop生态系统学习之路(十)MR将结果输出到hbase

    之前讲了MR将结果输出到hdfs.hive.db,今天再给大家分享一下,怎样将结果输出到hbase. 首先,提一句,笔者在hadoop集群运行此MR的时候报了一个错误.是一个jar包的缘故,这个错误是 ...

  4. 在类的头文件里尽量少引入其它头文件 &lt;&lt;Effective Objective-C&gt;&gt;

    与C 和C++ 一样,Objective-C 也使用"头文件"(header file) 与"实现文件"(implementation file)来区隔代码.用 ...

  5. linux【第六篇】用户和用户管理及定时任务复习

    定时任务复习 1.什么是定时任务? 2.如何编辑查看定时任务(配置文件位置?),语法的特殊字符意义是什么?- * , / 3.书写定时任务有哪些要领? 4.生产如何调试定时任务 5.生产场景配置定时任 ...

  6. vs2013发布网站提示 “未能将文件**复制到**”

    原因:年久失修,原来在项目中的一些文件给删掉或移除了 解决方法:打开.csproj文件(记事本打开),把提示的文件给删除掉.

  7. 聚合类新闻client初体验

    初体验的产品:今日头条(ios3.6).百度新闻(ios4.4.0).ZAKER(ios4.4.5).鲜果(ios3.8.7).中搜搜悦(ios4.0.1).Flipboard(ios2.3.9) 1 ...

  8. GoodUI:页面布局的技巧和设计理念

    http://goodui.org/ 中文翻译:http://www.cnblogs.com/Wayou/p/goodui.html 一年了,小小少年从幼年期过渡到成长期要开始加速冲刺了.毕竟钻头就是 ...

  9. mysql 系统函数

    SELECT VERSION() -- 获取 mysql版本号 SELECT CONNECTION_ID() -- 查看服务启动后 用户的连接次数 SELECT DATABASE(),SCHEMA() ...

  10. Java Socket线程的设计原理介绍

    转自:http://developer.51cto.com/art/201003/190001.htm Java Socket线程我们经常会用到的技术,但是有很多程序员还是有不少的使用问题,下面我们就 ...