【HIHOCODER 1043】题目1 : 完全背包
描述
且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!
等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了………总而言之,在另一个宇宙中,小Ho面临的问题发生了细微的变化!
小Ho现在手上有M张奖券,而奖品区有N种奖品,分别标号为1到N,其中第i种奖品需要need(i)张奖券进行兑换,并且可以兑换无数次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。
提示一: 切,不就是01变成了0K么
提示二:强迫症患者总是会将状态转移方程优化一遍又一遍
提示三:同样不要忘了优化空间哦!
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为两个正整数N和M,表示奖品的种数,以及小Ho手中的奖券数。
接下来的n行描述每一行描述一种奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。
测试数据保证
对于100%的数据,N的值不超过500,M的值不超过10^5
对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出
对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
样例输入
5 1000
144 990
487 436
210 673
567 58
1056 897
样例输出
5940
完全背包的动规方程为
for i: 1 ~ n
for j: 0 ~ m //这一层动规可以利用这一层的结果
if j > cost[i]
dp[i][j]=dp[i-1][j] //防止断层
else
dp[i][j]=max(dp[i-1][j],dp[i-1][j-cost[i]]+value[i]
可以看出,可以将这个方程修改为一维的
for i: 1 ~ n
for j: 0 ~ m //这一层动规可以利用这一层的结果
dp[j]=max(dp[j],dp[j-cost[i]]+value[i]
二维版
import java.io.*;
import java.util.*;
public class Main {
static final int N=(int)1e5+10;
static int dp[][]=new int[505][N],
a[][]=new int[N][2];
public static void main(String[] args){
Scanner sc=new Scanner(new InputStreamReader(System.in));
int n=sc.nextInt(),m=sc.nextInt();
for(int i=1;i<=n;i++) {
for(int j=0;j<2;j++) {
a[i][j]=sc.nextInt();
}
}
for(int i=0;i<=m;i++) dp[0][i]=0;
for(int i=1;i<=n;i++) {
for(int j=0;j<=m;j++) {
if(j<a[i][0]) dp[i][j]=dp[i-1][j];
else dp[i][j]=Math.max(dp[i-1][j],dp[i][j-a[i][0]]+a[i][1]);
}
}
int ans=0;
for(int i=0;i<=m;i++) ans=Math.max(ans, dp[n][i]);
System.out.println(ans);
sc.close();
}
}
一维版
import java.io.*;
import java.util.*;
public class Main {
static final int N=(int)1e5+10;
static int dp[]=new int[N],
a[][]=new int[N][2];
public static void main(String[] args){
Scanner sc=new Scanner(new InputStreamReader(System.in));
int n=sc.nextInt(),m=sc.nextInt();
for(int i=1;i<=n;i++) {
for(int j=0;j<2;j++) {
a[i][j]=sc.nextInt();
}
}
for(int i=0;i<=m;i++) dp[i]=0;
for(int i=1;i<=n;i++) {
for(int j=a[i][0];j<=m;j++) {
dp[j]=Math.max(dp[j],dp[j-a[i][0]]+a[i][1]);
}
}
System.out.println(dp[m]);
sc.close();
}
}
【HIHOCODER 1043】题目1 : 完全背包的更多相关文章
- hihoCoder #1043 : 完全背包(板子题)
#1043 : 完全背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的 ...
- hihoCoder 1043 完全背包 (dp)
http://hihocoder.com/problemset/problem/1043 动态转移方程 :for v=cost..V f[v]=max(f[v],f[v-c[i]]+w[i]); #i ...
- hihocoder 1043 完全背包
#1043 : 完全背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的 ...
- hihocoder第七周 完全背包模板题
时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了! 等等,这段故事为 ...
- DP大作战—组合背包
题目描述 组合背包:有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包). DD大牛的伪代码 for i = 1 to N if 第i件物品属 ...
- Codevs 3269 混合背包(二进制优化)
3269 混合背包 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description 背包体积为V ,给出N个物品,每个物品占用体积为V ...
- 【DP_背包专题】 背包九讲
这段时间看了<背包九讲>,在HUST VJUDGE上找到了一个题单,挑选了其中16道题集中做了下,选题全部是HDU上的题,大多是简单题.目前做了点小总结,大概提了下每道题的思路重点部分,希 ...
- Ural 1043 Cover the Arc
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1043 题目大意:一个2000*2000方格坐标,x,y范围都是[-1000,1000]. ...
- codevs 3269 混合背包
题目描述 Description 背包体积为V ,给出N个物品,每个物品占用体积为Vi,价值为Wi,每个物品要么至多取1件,要么至多取mi件(mi > 1) , 要么数量无限 , 在所装物品总体 ...
随机推荐
- 为什么使用Stylus
CSS预处理器的出现大大的提高了前端开发的效率和逼格,它让CSS可编程化.LESS和Sass/SCSS是两种最为常见的预处理器,拥有大量的用户基数,数目庞杂的第三方库.然而,还有一种预处理器并未引起足 ...
- 最小生成树Prim算法和Kruskal算法(转)
(转自这位大佬的博客 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html ) Prim算法 1.概览 普里姆算法(Pr ...
- AtCoder Regular Contest 074 F - Lotus Leaves
题目传送门:https://arc074.contest.atcoder.jp/tasks/arc074_d 题目大意: 给定一个\(H×W\)的网格图,o是可以踩踏的点,.是不可踩踏的点. 现有一人 ...
- 分布式数据存储 之 Redis(二) —— spring中的缓存抽象
分布式数据存储 之 Redis(二) -- spring中的缓存抽象 一.spring boot 中的 StringRedisTemplate 1.StringRedisTemplate Demo 第 ...
- 洛谷P2762 太空飞行计划问题(最大权闭合图)
题意 有$m$个实验,$n$中器材,每个实验需要使用一些器材 每个实验有收入,每个器材有花费 最大化收入 - 花费 Sol 最大权闭合图的经典应用 从$S$向每个实验连流量为该实验收入的边 从每个器材 ...
- ios项目中引用其他开源项目
1. 将开源项目的.xcodeproj拖入项目frameworks 2. Build Phases下 Links Binary With Libraries 引入.a文件.Target Depende ...
- TFS2010升级至TFS2013完全指南(更换服务器)
一.背景: 公司已使用tfs2010很长时间,目前随着公司的发展,项目越来越少,而产品越来越多,采用的开发模式,也逐渐从瀑布式.迭代式转向敏捷开发.为了更好的支持产品研发,决定将tfs ...
- jmeter的JVM参数设置
JMeter用户可根据运行的计算机配置,来适当调整JMeter.bat中的JVM调优设置,如下所示: set HEAP=-Xms512m -Xmx512m set NEW=-XX:NewSize=12 ...
- 事件冒泡 & 阻止事件冒泡
事件冒泡 : 当一个元素接收到事件的时候,会把他接收到的所有传播给他的父级,一直到顶层window.事件冒泡机制 阻止冒泡 : 当前要阻止冒泡的事件函数中调用 event.cancelBubble = ...
- uva11925 Generating Permutations
逆序做,逆序输出 紫书上的描述有点问题 感觉很经典 ans.push_back(2); a.insert(a.begin(),a[n-1]); a.erase(a.end()-1); a.push_b ...