关于差分约束详情可阅读:http://www.cppblog.com/menjitianya/archive/2015/11/19/212292.html

题意:

给定n个区间[L,R], 每个区间至少放w个球, 问最后整个区间最少要放多少个球。

分析:

假设d[i] 是 [1,i] 至少有多少个点被选中, 特殊地, d[0] = 0。 每个区间的描述可以转化为d[R] - d[L-1] >= w。(因为d[L]也要选中, 左闭右闭区间, 所以要减d[L-1])
因为d[i]描述了一个求和函数,所以对于d[i]和d[i-1]其实是有自身限制的,考虑到每个点有选和不选两种状态,所以d[i]和d[i-1]需要满足以下不等式: 0 <= d[i] - d[i-1] <= 1 (即第i个数选还是不选)

这样, 我们就有了3个约束不等式

d[R] - d[L-1] >= w  (1)

d[i] - d[i-1] >= 0      (2)

d[i-1] - d[i] >= -1     (3)

求出d[min-1]到d[max]的最长路, d[max] 就是这个区间最少要放多少个球。

#include<cstdio>
#include<string>
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<queue>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
const int maxn = + ;
struct edge{
int to , d;
edge(int _to, int _d): to(_to), d(_d){}
};
vector<edge> G[maxn];
/*
差分约束系统
对于每个不等式 x[i] - x[j] >= a[k],对结点 j 和 i 建立一条 j -> i的有向边,边权为a[k],求x[n] - x[1] 的最大值就是求 1 到n的最长路。 假设d[i] 是 [1,i] 至少有多少个点被选中, 特殊地, d[0] = 0;
每个区间的描述可以转化为d[R] - d[L-1] >= w 因为d[i]描述了一个求和函数,所以对于d[i]和d[i-1]其实是有自身限制的,考虑到每个点有选和不选两种状态,
所以d[i]和d[i-1]需要满足以下不等式: 0 <= d[i] - d[i-1] <= 1 (即第i个数选还是不选)
*/ void add_edge(int u, int v, int d){
G[u].push_back(edge(v, d));
}
int n, a, b;
bool vis[maxn];
int dis[maxn];
int spfa(int s){
memset(vis,, sizeof(vis));
for(int i = a; i <= b; i++) dis[i] = -1e9;
queue<int> q;
vis[s] = ;
dis[s] = ;
q.push(s);
while(!q.empty()){
int u = q.front();
for(int i = ; i < G[u].size(); i++){
int v = G[u][i].to, d = G[u][i].d;
if(dis[u] + d > dis[v]){//求最长路
dis[v] = dis[u] + d;
if(!vis[v]){
vis[v] = ;
q.push(v);
}
}
}
vis[u] = ;
q.pop();
}
return dis[b];
}
int main(){
// freopen("1.txt","r", stdin);
while(~scanf("%d", &n)){
a = 1e9 + , b = -1e9 + ; //求这个区间的最小值, 最大值
rep(i,,maxn) G[i].clear();
rep(i,,n){
int L, R, w;
scanf("%d %d %d", &L, &R, &w);
a = min(a, L), b = max(b, R);
add_edge(L-,R,w);//对结点 j 和 i 建立一条 j -> i的有向边,边权为a[k]
}
_rep(i,a,b){
add_edge(i-,i,); //d[i] - d[i-1] >= 0
add_edge(i,i-,-); //d[i] - d[i-1] <= 1 不等式标准化成 d[i-1] - d[i] >= -1
}
puts("");
printf("%d\n",spfa(a-));
}
}

POJ 1201 Intervals(差分约束 区间约束模版)的更多相关文章

  1. poj 1201 Intervals(差分约束)

    题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...

  2. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  3. POJ 1201 Intervals (差分约束系统)

    题意 在区间[0,50000]上有一些整点,并且满足n个约束条件:在区间[ui, vi]上至少有ci个整点,问区间[0, 50000]上至少要有几个整点. 思路 差分约束求最小值.把不等式都转换为&g ...

  4. POJ 1201 Intervals || POJ 1716 Integer Intervals 差分约束

    POJ 1201 http://poj.org/problem?id=1201 题目大意: 有一个序列,题目用n个整数组合 [ai,bi,ci]来描述它,[ai,bi,ci]表示在该序列中处于[ai, ...

  5. poj 1201 Intervals 解题报告

    Intervals Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu Submit Statu ...

  6. POJ 1201 Intervals【差分约束】

    传送门:http://poj.org/problem?id=1201 题意: 有n个如下形式的条件:,表示在区间[, ]内至少要选择个整数点.问你满足以上所有条件,最少需要选多少个点? 思路:第一道差 ...

  7. poj 1201 Intervals(差分约束)

    做的第一道差分约束的题目,思考了一天,终于把差分约束弄懂了O(∩_∩)O哈哈~ 题意(略坑):三元组{ai,bi,ci},表示区间[ai,bi]上至少要有ci个数字相同,其实就是说,在区间[0,500 ...

  8. POJ 1201 Intervals(图论-差分约束)

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20779   Accepted: 7863 Descri ...

  9. POJ 1201 Intervals (经典) (差分约束)

    <题目链接> 题目大意:给你$n$段区间,$a_i,b_i,c_i$ 表示在 $[a_i,b_i]$ 区间内至少要选择$c_i$个点.现在问你在满足这n个条件的情况下,最少要选多少个点? ...

随机推荐

  1. 题解报告:poj 2631 Roads in the North(最长链)

    Description Building and maintaining roads among communities in the far North is an expensive busine ...

  2. 创建表规范 lob 字段

    ORAClce 11g 提供如下特性: BasicfileOracle10g 及之前版本被称为basicfile Securefile11g中新增securefile 优点:集中写入缓存(WGC),4 ...

  3. poj1815Friendship(最小割求割边)

    链接 题意为去掉多少个顶点使图不连通,求顶点连通度问题.拆点,构造图,对于<u,v>可以变成<u2,v1> <v2,u1>容量为无穷,<u1,u2>容量 ...

  4. 浅析cookie

    基本概念:cookie是指web浏览器存储的少量数据,该数据会在每次请求一个相关的URL时自动传到服务器中. 以博客园为例,我们看看cookie有哪些属性:  1.Name:cookie的名称: 2. ...

  5. android java 知识点

    ublic,protected,friendly,private的访问权限如下: 关键字        当前类       同一package        子孙类       其他package p ...

  6. RxJava的map方法与flatMap方法

    简单讲,map和flatMap都是来完成Observable构造的数据到Observer接收数据的一个转换,这么说有点绕

  7. 第8章 应用协议 图解TCP/IP 详解

    第8章 应用协议 图解TCP/IP 详解 8.1 应用层协议概要 应用层协议的定义 TCP和IP等下层协议是不依赖上层应用类型.实用性非常广的协议.而应用协议则是为了实现某种应用而设计和创造的协议. ...

  8. Load average in Linux的精确含义

    Man 上的解释: load average System load averages is the average number of processes that are either in a ...

  9. win7系统 windows update 总是更新失败解决方法:

    win7系统 windows update 总是更新失败解决方法: 右键单击桌面“计算机”选择“管理“. 进到“计算机管理“窗口后,展开”服务和应用程序“并双击”服务“,在窗口右侧按照名称找到”Win ...

  10. ssh 非root用户互信

    之所以要把这个记录下来 是因为它的确和root用户不一样root用户 不需要改动什么权限问题  只要生成私钥/公钥对 即可 但是一样的操作在普通用户上就出了问题了 折腾了老半天 ssh-keygen ...