min-max容斥小结
https://www.zybuluo.com/ysner/note/1248287
定义
对于一个集合\(S\),
\(\min(S)\)表示其第一个出现的元素(\(or\)最小的元素),
\(\max(S)\)表示其最后一个出现的元素(\(or\)最大的元素)。
设\(E(x)\)表示元素\(x\)的期望出现次数(出现时是第几次)。
则有一个不可言妙的公式\[E(\max(S))=\sum_{S'\in S}E(\min(S'))*(-1)^{|S'|+1}\]
至于证明。。。蒟蒻这辈子都不可能会的,挂个证明的链接
用途
- 对于一个集合\(S\),给出每个元素出现的概率,我们需要求每一个元素都出现至少一次的期望次数(即\(\max(S)\))时,可使用\(min-max\)容斥。
题目
- [X] [HDU4336]Card Collector
(太板了,不写题解) - [X] [PKUWC2018]随机游走
题解
min-max容斥小结的更多相关文章
- min-max 容斥
$\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...
- Min-max 容斥与 kth 容斥
期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- UVa12633 Super Rooks on Chessboard(容斥 + FFT)
题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...
- hdu1695:数论+容斥
题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
- min-max容斥学习笔记
min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...
随机推荐
- Pycharm 专业版安装
1.Pycharm官网,网址:http://www.jetbrains.com/pycharm/download/#section=windows,下载PyCharm安装包,根据自己电脑的操作系统进行 ...
- BZOJ 2223: [Coci 2009]PATULJCI 主席树
Code: #include<bits/stdc++.h> #define maxn 300001 #define mid ((l+r)>>1) using namespace ...
- Re0:DP学习之路 母牛的故事 HDU - 2018
解法 一定要注意斐波那契数列的原始意义,斐波那契数列也叫作兔子数列是兔子繁衍的一种表示方法.同样适用于别的情况的动物繁衍问题 原始的是3个月一胎现在四个月那么方程就是 f(n)=n n<=4 f ...
- 山建校赛B题公式证明
原题 证明
- <MySQL>入门五 视图
-- 视图 /* 含义:虚拟表,和普通的表一样使用 mysql5.1版本的新特性,是通过表动态生成的数据,只保存了sql的逻辑,不保存查询的结果 应用场景: - 多个地方用到同样的查询结果 - 该查询 ...
- 登录deepin 15.9后不显示任务栏,无法操作
一直觉得在Linux下编程很酷,所以决定装个Deepin试试,安装很顺利,然后搭建了开发环境,写了一个简单程序,觉得挺不错的. 哪知第二天一开机,登录后找不到任务栏了,做不了啥操作,走接傻眼了,直觉以 ...
- python3返回值中的none
浏览器返回null,python3返回none,懵了. google了很多资料,不明就里,这就是没基础的后果啊呀呀呀. 上阮一峰的截图,就这么理解下凑合吧:
- centos7在grub界面下更改root密码
想要更改root的密码或者忘记了root的密码的时候可以在grub界面下更改root的密码. 百度了很多内容,更多方法都是适用于centos6及以前版本的,终于找到一个可以的. 1.开机后,在下图界面 ...
- 【模板】大数乘法(51nod 1027)
#include<cstdio> #include<cstring> #include<algorithm> #define LL long long #defin ...
- HDU - 6158 The Designer
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6158 本题是一个计算几何题——四圆相切. 平面上的一对内切圆,半径分别为R和r.现在这一对内切圆之间,按 ...