POJ1584

题意:给定n条边首尾相连对应的n个点 判断构成的图形是不是凸多边形

然后给一个圆 判断圆是否完全在凸包内(相切也算)

思路:首先运用叉积判断凸多边形 相邻三条边叉积符号相异则必有凹陷 O(n)

之后首先判断圆心是否在凸多边形内 如果凸多边形的点有序 则可以在logn时间内判断 否则先排序再判断 O(nlogn)

然后用每条边(线段)判断到圆心的距离即可

这道题也没给数据范围 O(nlogn)是可以AC的。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; const double eps=1e-9; int cmp(double x)
{
if(fabs(x)<eps)return 0;
if(x>0)return 1;
else return -1;
} const double pi=acos(-1.0); inline double sqr(double x)
{
return x*x;
} struct point
{
double x,y;
point (){}
point (double a,double b):x(a),y(b){}
void input()
{
scanf("%lf%lf",&x,&y);
}
friend point operator +(const point &a,const point &b)
{
return point(a.x+b.x,a.y+b.y);
}
friend point operator -(const point &a,const point &b)
{
return point(a.x-b.x,a.y-b.y);
}
friend bool operator ==(const point &a,const point &b)
{
return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
}
friend point operator *(const point &a,const double &b)
{
return point(a.x*b,a.y*b);
}
friend point operator*(const double &a,const point &b)
{
return point(a*b.x,a*b.y);
}
friend point operator /(const point &a,const double &b)
{
return point(a.x/b,a.y/b);
}
double norm()
{
return sqrt(sqr(x)+sqr(y));
}
}; struct line
{
point a,b;
line(){};
line(point x,point y):a(x),b(y)
{ }
};
double det(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
} double dot(const point &a,const point &b)
{
return a.x*b.x+a.y*b.y;
} double dist(const point &a,const point &b)
{
return (a-b).norm();
} point rotate_point(const point &p,double A)
{
double tx=p.x,ty=p.y;
return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
} bool parallel(line a,line b)
{
return !cmp(det(a.a-a.b,b.a-b.b));
} bool line_joined(line a,line b,point &res)
{
if(parallel(a,b))return false;
double s1=det(a.a-b.a,b.b-b.a);
double s2=det(a.b-b.a,b.b-b.a);
res=(s1*a.b-s2*a.a)/(s1-s2);
return true;
} bool pointonSegment(point p,point s,point t)
{
return cmp(det(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0;
} void PointProjLine(const point p,const point s,const point t,point &cp)
{
double r=dot((t-s),(p-s))/dot(t-s,t-s);
cp=s+r*(t-s);
} struct polygon_convex
{
vector<point>P;
polygon_convex(int Size=0)
{
P.resize(Size);
}
}; bool comp_less(const point &a,const point &b)
{
return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0; } polygon_convex convex_hull(vector<point> a)
{
polygon_convex res(2*a.size()+5);
sort(a.begin(),a.end(),comp_less);
a.erase(unique(a.begin(),a.end()),a.end());//删去重复点
int m=0;
for(int i=0;i<a.size();i++)
{
while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
res.P[m++]=a[i];
}
int k=m;
for(int i=int(a.size())-2;i>=0;--i)
{
while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
res.P[m++]=a[i];
}
res.P.resize(m);
if(a.size()>1)res.P.resize(m-1);
return res;
} bool is_convex(vector<point> &a)
{
for(int i=0;i<a.size();i++)
{
int i1=(i+1)%int(a.size());
int i2=(i+2)%int(a.size());
int i3=(i+3)%int(a.size());
if((cmp(det(a[i1]-a[i],a[i2]-a[i1]))*cmp(det(a[i2]-a[i1],a[i3]-a[i2])))<0)
return false;
}
return true;
}
int containO(const polygon_convex &a,const point &b)
{
int n=a.P.size();
point g=(a.P[0]+a.P[n/3]+a.P[2*n/3])/3.0;
int l=0,r=n;
while(l+1<r)
{
int mid=(l+r)/2;
if(cmp(det(a.P[l]-g,a.P[mid]-g))>0)
{
if(cmp(det(a.P[l]-g,b-g))>=0&&cmp(det(a.P[mid]-g,b-g))<0)r=mid;
else l=mid;
}else
{
if(cmp(det(a.P[l]-g,b-g))<0&&cmp(det(a.P[mid]-g,b-g))>=0)l=mid;
else r=mid;
}
}
r%=n;
int z=cmp(det(a.P[r]-b,a.P[l]-b))-1;
if(z==-2)return 1;
return z;
} bool circle_in_polygon(point cp,double r,polygon_convex &pol)
{ polygon_convex pp=convex_hull(pol.P);
if(containO(pp,cp)!=1)return false;
for(int i=0;i<pol.P.size();i++)
{
int j;
if(i<pol.P.size()-1)j=i+1;
else j=0;
point prol;
PointProjLine(cp,pol.P[i],pol.P[j],prol);
double dis;
if(pointonSegment(prol,pol.P[i],pol.P[j]))dis=dist(prol,cp);
else dis=min(dist(cp,pol.P[i]),dist(pol.P[j],cp));
if(cmp(dis-r)==-1)return false;
}
return true;
}
vector<point>pn;
int main()
{freopen("t.txt","r",stdin);
//freopen("1.txt","w",stdout);
int n;
while(scanf("%d",&n)&&n>=3)
{pn.resize(n);
double ra;scanf("%lf",&ra);
point cc;cc.input();
for(int i=0;i<n;i++)
pn[i].input();
polygon_convex pc;
if(!is_convex(pn)){printf("HOLE IS ILL-FORMED\n");continue;}
pc.P=pn;
if(circle_in_polygon(cc,ra,pc)){printf("PEG WILL FIT\n");continue;}
else {printf("PEG WILL NOT FIT\n");continue;}
}
return 0;
}

  

POJ1584 A Round Peg in a Ground Hole 凸包判断 圆和凸包的关系的更多相关文章

  1. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  2. poj1584 A round peg in a ground hole【计算几何】

    含[判断凸包],[判断点在多边形内],[判断圆在多边形内]模板  凸包:即凸多边形 用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点. The ...

  3. poj1584 A Round Peg in a Ground Hole 判断多边形凹凸,点到线的距离【基础计算几何】

    大致思路:首先对于所给的洞的点,判断是否是凸多边形,图形的输入和输出可以是顺时针或者逆时针,而且允许多点共线 Debug 了好几个小时,发现如下问题 判断三点是否共线,可用斜率公式判断 POINT p ...

  4. POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...

  5. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  6. A Round Peg in a Ground Hole(凸包应用POJ 1584)

    A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5684 Accepte ...

  7. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5456   Acc ...

  8. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  9. POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

随机推荐

  1. 8.url路由

    1.单一路由对应 url(r'^index/$', views.index), 这里要注意的是,/$ 表示只有只/结尾的才有效,如果把$符号去掉的话,只要是以index/开头都会匹配到这个url. 2 ...

  2. Java线上应用故障排查

    线上故障主要2种: CPU利用率很高, 内存占用率很大 一.CPU利用率很高 1. top查询那个进程CPU使用率高 2. 显示进程列表 ps -mp pid -o THREAD,tid,time 找 ...

  3. 九度oj 题目1056:最大公约数

    题目1056:最大公约数 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:8068 解决:5317 题目描述: 输入两个正整数,求其最大公约数. 输入: 测试数据有多组,每组输入两个正整数. ...

  4. linux程序分析工具

    ldd和nm是Linux下两个非常实用的程序分析工具.ldd是用来分析程序运行时需要依赖的动态链接库的工具,nm是用来查看指定程序中的符号表信息的工具,objdump用来查看源代码与汇编代码,-d只查 ...

  5. P1165 日志分析 洛谷

    https://www.luogu.org/problem/show?pid=1165 题目描述 M 海运公司最近要对旗下仓库的货物进出情况进行统计.目前他们所拥有的唯一记录就是一个记录集装箱进出情况 ...

  6. JVM(二):Java中的语法糖

    JVM(二):Java中的语法糖 上文讲到在语义分析中会对Java中的语法糖进行解糖操作,因此本文就主要讲述一下Java中有哪些语法糖,每个语法糖在解糖过后的原始代码,以及这些语法糖背后的逻辑. 语法 ...

  7. Ubuntu 16.04安装UML工具StarUML 2

    StarUML 2是一个商业软件,但是没有时间限制,就像Sublime Text 3一样.而且具有跨平台,支持Mac.Windows. 这个软件曾经08年的时候在老D的博客上有推荐过,参考:http: ...

  8. Ubuntu 16.04安装SwitchHosts

    下载: https://github.com/oldj/SwitchHosts/releases 解压: unzip SwitchHosts-linux-x64_v3.3.6.5287.zip 移动: ...

  9. Android studio 插件之 GsonFormat (自己主动生成javabean)

    概述 相信大家在做开发的过程中都写过非常多的javabean ,非常多情况下 都是一个列表数据就是一个单独的javabean.假设大家自己敲的话费时费力 还非常easy敲错. 今天给大家推荐一个插件 ...

  10. vuejs快速入门

    参考链接:http://www.cnblogs.com/keepfool/p/5619070.html